Changeset b9d0f4e in git


Ignore:
Timestamp:
Feb 26, 2018, 3:17:40 PM (5 years ago)
Author:
Karim Abou Zeid <karim23697@…>
Branches:
(u'spielwiese', '0d6b7fcd9813a1ca1ed4220cfa2b104b97a0a003')
Children:
dc9b97b94d6347995be139057074bed6e378f7d4
Parents:
a2cd284766c6d39d5f8d6fb5b7f7f9ebf9d9cb02
Message:
Add doc for dyck, fib, tetrahedron and triangular
File:
1 edited

Legend:

Unmodified
Added
Removed
  • Singular/LIB/fpalgebras.lib

    ra2cd284 rb9d0f4e  
    642642
    643643proc dyckGrp1(int n, int d, intvec P)
    644 "
    645 The Dyck group with the following presentation
    646 < x_1, x_2, ... , x_n | (x_1)^p1 = (x_2)^p2 = ... = (x_n)^pn = x_1 * x_2 * ... * x_n = 1 >
    647 negative exponents are allowed
    648 representation in the form x_i^p_i - x_(i+1)^p_(i+1)
     644"USAGE: dyckGrp1(n,d,P); n an integer, d an integer, P an intvec
     645RETURN: ring
     646NOTE: - the ring contains the ideal I, which contains the required relations
     647@*    - The Dyck group with the following presentation
     648@*      < x_1, x_2, ... , x_n | (x_1)^p1 = (x_2)^p2 = ... = (x_n)^pn = x_1 * x_2 * ... * x_n = 1 >
     649@*    - negative exponents are allowed
     650@*    - representation in the form x_i^p_i - x_(i+1)^p_(i+1)
     651@*    - d gives the degreebound for the Letterplace ring
    649652"
    650653{
     
    682685
    683686proc dyckGrp2(int n, int d, intvec P)
    684 "
    685 The Dyck group with the following presentation
    686 < x_1, x_2, ... , x_n | (x_1)^p1 = (x_2)^p2 = ... = (x_n)^pn = x_1 * x_2 * ... * x_n = 1 >
    687 negative exponents are allowed
    688 representation in the form x_i^p_i - 1
     687"USAGE: dyckGrp2(n,d,P); n an integer, d an integer, P an intvec
     688RETURN: ring
     689NOTE: - the ring contains the ideal I, which contains the required relations
     690@*    - The Dyck group with the following presentation
     691@*      < x_1, x_2, ... , x_n | (x_1)^p1 = (x_2)^p2 = ... = (x_n)^pn = x_1 * x_2 * ... * x_n = 1 >
     692@*    - negative exponents are allowed
     693@*    - representation in the form x_i^p_i - 1
     694@*    - d gives the degreebound for the Letterplace ring
    689695"
    690696{
     
    723729
    724730proc dyckGrp3(int n, int d, intvec P)
    725 "
    726 The Dyck group with the following presentation
    727 < x_1, x_2, ... , x_n | (x_1)^p1 = (x_2)^p2 = ... = (x_n)^pn = x_1 * x_2 * ... * x_n = 1 >
    728 only positive exponents are allowed
    729 no inverse generators needed
     731"USAGE: dyckGrp2(n,d,P); n an integer, d an integer, P an intvec
     732RETURN: ring
     733NOTE: - the ring contains the ideal I, which contains the required relations
     734@*    - The Dyck group with the following presentation
     735@*      < x_1, x_2, ... , x_n | (x_1)^p1 = (x_2)^p2 = ... = (x_n)^pn = x_1 * x_2 * ... * x_n = 1 >
     736@*    - only positive exponents are allowed
     737@*    - no inverse generators needed
     738@*    - d gives the degreebound for the Letterplace ring
    730739"
    731740{
     
    767776////////////////////////////////////////////////////////////////////
    768777
    769 proc fibGroup(int m, int d)
    770 "The Fibonacci group F(2, m) with the following presentation
    771 < x_1, x_2, ... , x_m | x_i * x_(i + 1) = x_(i + 2) >
    772 TODO: basefield Q oder F2?
    773 inverse Elemente!
    774 "
     778proc fibonacciGroup(int m, int d)
     779"USAGE: fibonacciGroup(m,d); m an integer, d an integer
     780RETURN: ring
     781NOTE: - the ring contains the ideal I, which contains the required relations
     782@*    - The Fibonacci group F(2, m) with the following presentation
     783@*      < x_1, x_2, ... , x_m | x_i * x_(i + 1) = x_(i + 2) >
     784@*    - d gives the degreebound for the Letterplace ring
     785"
     786// TODO: basefield Q oder F2?
     787// TODO: inverse Elemente!
    775788{
    776789 if (m < 3) {ERROR("At least three generators are required!");}
     
    810823////////////////////////////////////////////////////////////////////
    811824
    812 proc tetrahedron (int g, int d)
    813 "The following examples are found in
     825proc tetrahedronGroup(int g, int d)
     826"USAGE: tetrahedronGroup(g,d); g an integer, d an integer
     827RETURN: ring
     828NOTE: - the ring contains the ideal I, which contains the required relations
     829@*    - g gives the number of the example
     830@*    - d gives the degreebound for the Letterplace ring
     831@*
     832The examples are found in
    814833Classification of the finite generalized tetrahedron groups
    815834by Gerhard Rosenberger and Martin Scheer.
    816 The following 5 examples are denoted in Proposition 1.9 and concern
     835The 5 examples are denoted in Proposition 1.9 and concern
    817836finite generalized tetrahedron group in the Tsarnarov-case, which are
    818837not equivalent to a presentation for an ordinary tetrahedron group.
    819 g gives the number of the example
     838@*
    820839"
    821840{
     
    864883////////////////////////////////////////////////////////////////////
    865884
    866 proc trianGrp(int g, int d)
    867 "The following examples are found in
     885proc triangularGroup(int g, int d)
     886"USAGE: triangularGroup(g,d); g an integer, d an integer
     887RETURN: ring
     888NOTE: - the ring contains the ideal I, which contains the required relations
     889@*    - g gives the number of the example
     890@*    - d gives the degreebound for the Letterplace ring
     891@*
     892The examples are found in
    868893Classification of the finite generalized tetrahedron groups
    869894by Gerhard Rosenberger and Martin Scheer.
    870 Triangle groups, as in theorem 2.12
    871 g is the number of the example
     895The 14 examples are denoted in theorem 2.12
     896@*
    872897"
    873898{
Note: See TracChangeset for help on using the changeset viewer.