Changeset bca5a64 in git


Ignore:
Timestamp:
Feb 13, 2019, 1:27:58 AM (5 years ago)
Author:
Viktor Levandovskyy <levandov@…>
Branches:
(u'fieker-DuVal', '117eb8c30fc9e991c4decca4832b1d19036c4c65')(u'spielwiese', '3720ae8bfcff4a4649ee98a15552089151d2d59b')
Children:
e54cd64f6533b4c1a5b125b3abb3b22b94e98f34
Parents:
705501e9c1243b90d049bde35cba1c383fb97724
Message:
doc-related fixes
Location:
Singular/LIB
Files:
2 edited

Legend:

Unmodified
Added
Removed
  • Singular/LIB/ncfactor.lib

    r705501 rbca5a64  
    2525  facShift(h);               Factorization in the n'th shift algebra
    2626  facFirstShift(h);          Factorization in the first shift algebra
     27  homogfacNthWeyl(h);        Homogeneous factorization in the n'th Weyl algebra
    2728  homogfacNthQWeyl(h);       Homogeneous factorization in the n'th Q-Weyl algebra
    2829  homogfacFirstQWeyl(h);     Homogeneous factorization in the first Q-Weyl algebra
     
    52575258//////////////////////////////////////////////////
    52585259
    5259 static proc homogfacNthWeyl(poly h)
     5260proc homogfacNthWeyl(poly h)
    52605261"USAGE: homogfacNthWeyl(h); h is a homogeneous polynomial in the
    52615262 nth Weyl algebra with respect to the -1,1-grading
  • Singular/LIB/ncrat.lib

    r705501 rbca5a64  
    33category="Noncommutative";
    44info="
    5 LIBRARY:      ncrat.lib Framework for working with nc rational functions
     5LIBRARY:      ncrat.lib Framework for working with non-commutative rational functions
    66
    77AUTHOR:       Ricardo Schnur, email: ricardo.schnur@math.uni-sb.de
    88
    9 SUPPORT:      This project is funded by the SFB-TRR 195
     9SUPPORT:      This project has been funded by the SFB-TRR 195
    1010  'Symbolic Tools in Mathematics and their Application'.
    1111
    1212OVERVIEW:     This library provides a framework for working with
    1313  non-commutative rational functions (or rather, expressions)
    14   and their representations
     14  and their linearized representations
    1515
    1616REFERENCES:   T. Mai: On the analytic theory of non-commutative
     
    2121   rational functions; formal linear representations; minimal representations
    2222
     23NOTE: an almost self-explaining introduction to the posibilities of the framework
     24can be achieved by running the example for the procedure ncrepGetRegularMinimal.
     25   
    2326PROCEDURES:
    2427  ncInit(list);                 Set up framework, list contains nc variables
     
    28082811  "EXAMPLE: (Hua's identity)";
    28092812  echo = 2;
     2813  // We want to prove the Hua's identity, telling that for two
     2814  // invertible elements x,y from a division ring, one has
     2815  // inv(x+x*inv(y)*x)+inv(x+y) = inv(x)
     2816  // where inv(t) stands for the two-sided inverse of t
    28102817  ncInit(list("x", "y"));
    28112818  ncrat f = ncratFromString("inv(x+x*inv(y)*x)+inv(x+y)-inv(x)");
     
    28162823  ncrepDim(s);
    28172824  print(s);
     2825  // since s represents the zero element, Hua's identity holds.
    28182826}
    28192827
Note: See TracChangeset for help on using the changeset viewer.