Changeset c309bd in git for Singular/LIB/ncfactor.lib
 Timestamp:
 Jan 22, 2019, 2:46:40 AM (5 years ago)
 Branches:
 (u'spielwiese', '8e0ad00ce244dfd0756200662572aef8402f13d5')
 Children:
 b6c31c216556776982b692ae91aabf36c8d65989
 Parents:
 4e0877055ded5e7a265bde08271ded2c5d373568937c89ec020469703d18b67056c4ad5c6dbf4459
 File:

 1 edited
Legend:
 Unmodified
 Added
 Removed

Singular/LIB/ncfactor.lib
r937c89e rc309bd 1 1 /////////////////////////////////////////////////////////// 2 version ="version ncfactor.lib 4.1.1.0 Jan_2018 "; // $Id$2 version = "$Id$"; 3 3 category="Noncommutative"; 4 4 info=" 5 5 LIBRARY: ncfactor.lib Tools for factorization in some noncommutative algebras 6 AUTHORS: Albert Heinle, aheinle@uwaterloo.ca 7 @* Viktor Levandovskyy, levandov@math.rwthaachen.de 8 9 OVERVIEW: New methods for factorization on polynomials 10 are implemented for three types of algebras, all generated by 11 2*n, n in NN, generators (n'th Weyl, n'th shift and graded polynomials in n'th qWeyl algebras) 12 over a field K. 6 AUTHORS: Albert Heinle, aheinle at uwaterloo.ca 7 @* Viktor Levandovskyy, levandov at math.rwthaachen.de 8 9 OVERVIEW: In this library, new methods for factorization on polynomials 10 @* are implemented for several types of algebras, namely 11 @*  finitely presented (and also free) associative algebras (Letterplace subsystem) 12 @*  Galgebras, including (q)Weyl and (q)shift algebras in 2n variables 13 @* The determination of the best algorithm available for users input is done 14 @* automatically in the procedure ncfactor(). 15 13 16 @* More detailled description of the algorithms and related publications can be found at 14 17 @url{https://cs.uwaterloo.ca/\~aheinle/}. 15 18 16 19 PROCEDURES: 17 ncfactor(h); Factorization in any Galgebra.20 ncfactor(h); Factorization in any finitely presented algebra (incl. Galgebras) 18 21 facWeyl(h); Factorization in the n'th Weyl algebra 19 22 facFirstWeyl(h); Factorization in the first Weyl algebra … … 37 40 LIB "solve.lib"; //for solve 38 41 LIB "poly.lib"; //for content 42 LIB "fpadim.lib"; //for letterplace 39 43 40 44 proc tst_ncfactor() … … 128 132 } 129 133 print("Successful."); 130 print("Testing Min");131 if (!test_Min())132 {133 ERROR("Min is not working properly.");134 }135 print("Successful.");136 134 print("Testing isListEqual"); 137 135 if (!test_isListEqual()) … … 410 408 } 411 409 print("Successful."); 412 print("Testing delete_duplicates_noteval_and_sort"); 410 print("Testing getMaxDegreeVecLetterPlace"); 411 if(!test_getMaxDegreeVecLetterPlace()) 412 { 413 ERROR("getMaxDegreeVecLetterPlace is not working properly."); 414 } 415 print("Successful."); 416 print("Testing wordsWithMaxAppearance"); 417 if(!test_wordsWithMaxAppearance()) 418 { 419 ERROR("wordsWithMaxAppearance is not working properly."); 420 } 421 print("Successful."); 422 print("Testing monsSmallerThanLetterPlace"); 423 if(!test_monsSmallerThanLetterPlace()) 424 { 425 ERROR("monsSmallerThanLetterPlace is not working properly."); 426 } 427 print("Successful."); 428 print("Testing ncfactor_letterplace_poly_s"); 429 if(!test_ncfactor_letterplace_poly_s()) 430 { 431 ERROR("ncfactor_letterplace_poly_s is not working properly."); 432 } 433 print("Successful."); 434 print("Testing ncfactor_without_opt_letterplace"); 435 if(!test_ncfactor_without_opt_letterplace()) 436 { 437 ERROR("ncfactor_without_opt_letterplace is not working properly."); 438 } 439 print("Successful."); 413 440 print("All tests ran successfully."); 414 441 } … … 2041 2068 return(result); 2042 2069 }//testing increment_intvec 2043 2044 2045 //I know that Singular has this function in the package2046 //qhmoduli.lib. But I don't see the reason why I should clutter my2047 //namespace with functions to study Moduli Spaces of2048 //SemiQuasihomogeneous Singularities (in case somebody wonders)2049 static proc Min(def lst)2050 "USAGE: Min(lst); list is an iterable element (list/ideal/intvec)2051 containing ordered elements.2052 PURPOSE: returns the minimal element in lst2053 ASSUME: lst contains at least one element2054 "{//proc Min2055 def minElem = lst[1];2056 int i;2057 for (i = 2; i<=size(lst);i++)2058 {2059 if (lst[i]<minElem)2060 {2061 minElem = lst[i];2062 }2063 }2064 return (minElem);2065 }//proc Min2066 2067 2068 static proc test_Min()2069 {//Testing Min2070 int result = 1;2071 //Test 1: One element list2072 int expected= 1;2073 int obtained = Min(list(1));2074 if (expected!=obtained)2075 {2076 print("Test 1 for Min failed.");2077 print("Expected:\n");2078 print(expected);2079 print("obtained:\n");2080 print(obtained);2081 result = 0;2082 }2083 //Test 2: Two element list, first one is Min2084 expected = 5;2085 obtained = Min(list(5,8));2086 if (expected!=obtained)2087 {2088 print("Test 2 for Min failed.");2089 print("Expected:\n");2090 print(expected);2091 print("obtained:\n");2092 print(obtained);2093 result = 0;2094 }2095 //Test 3: Two element list, second one is Min2096 expected = 5;2097 obtained = Min(list(8,5));2098 if (expected!=obtained)2099 {2100 print("Test 3 for Min failed.");2101 print("Expected:\n");2102 print(expected);2103 print("obtained:\n");2104 print(obtained);2105 result = 0;2106 }2107 //Test 4: A lot of elements, Min randomly in between.2108 expected = 11;2109 obtained = Min(list(5,8,7,2,8,0,11,0,25));2110 if (expected!=obtained)2111 {2112 print("Test 4 for Min failed.");2113 print("Expected:\n");2114 print(expected);2115 print("obtained:\n");2116 print(obtained);2117 result = 0;2118 }2119 return(result);2120 }//Testing Min2121 2122 2070 2123 2071 static proc isListEqual(list l1, list l2) … … 3340 3288 " 3341 3289 {//isInCommutativeSubRing 3290 int i; int j; int k; 3291 intvec tempIntVec; 3292 int previouslyEncounteredVar = 1; 3293 if ( attrib(basering, "isLetterplaceRing") >= 1) 3294 {//separate department: letterplace case 3295 for (i = 1; i<=size(h); i++) 3296 {//iterating over the monomials of h 3297 tempIntVec = lp2iv(h[i]); 3298 if (size(tempIntVec) > 1) 3299 {//nontrivial monomial 3300 j = tempIntVec[1]; 3301 if (previouslyEncounteredVar != 1 and j != previouslyEncounteredVar) 3302 {//In this case, the previously encountered var is not equal to this one 3303 return(0); 3304 }//In this case, the previously encountered var is not equal to this one 3305 previouslyEncounteredVar = j; 3306 for (k = 2; k <= size(tempIntVec); k++) 3307 {//checking if each entry in the intvec is the same 3308 if (tempIntVec[k]!=j) 3309 {//more than one variable in monomial 3310 return(0); 3311 }//more than one variable in monomial 3312 }//checking if each entry in the intvec is the same 3313 }//nontrivial monomial 3314 else 3315 {i++; continue;} 3316 }//iterating over the monomials of h 3317 return(1); 3318 }//separate department: letterplace case 3342 3319 list tempRingList = ringlist(basering); 3343 3320 if (size(tempRingList)<=4) … … 3346 3323 }//In this case, the given ring was commutative 3347 3324 list appearing_variables; 3348 int i; int j;3349 3325 intvec degreeIntVec; 3350 3326 for (i = 1; i<=nvars(basering);i++) … … 3426 3402 { 3427 3403 print("Test 4 for isInCommutativeSubRing failed."); 3404 print("Expected:\n"); 3405 print(expected); 3406 print("obtained:\n"); 3407 print(obtained); 3408 result = 0; 3409 } 3410 return(result); 3411 //Test 5: Letterplace ring, negative example 3412 ring r2 = 0,(x,y,z),dp; 3413 int d =4; // degree bound 3414 def R2 = makeLetterplaceRing(d); 3415 setring R2; 3416 expected = 0; 3417 obtained = isInCommutativeSubRing(x + y); 3418 if (expected !=obtained) 3419 { 3420 print("Test 5 for isInCommutativeSubRing failed."); 3421 print("Expected:\n"); 3422 print(expected); 3423 print("obtained:\n"); 3424 print(obtained); 3425 result = 0; 3426 } 3427 //Test 6: Letterplace ring, positive example 3428 expected = 1; 3429 obtained = isInCommutativeSubRing(x + x*x); 3430 if (expected !=obtained) 3431 { 3432 print("Test 6 for isInCommutativeSubRing failed."); 3433 print("Expected:\n"); 3434 print(expected); 3435 print("obtained:\n"); 3436 print(obtained); 3437 result = 0; 3438 } 3439 //Test 7: Letterplace ring, previous bug 3440 expected = 0; 3441 obtained = isInCommutativeSubRing(x*x  y*y); 3442 if (expected !=obtained) 3443 { 3444 print("Test 7 for isInCommutativeSubRing failed."); 3428 3445 print("Expected:\n"); 3429 3446 print(expected); … … 3457 3474 if (deg(h)<=0) 3458 3475 { 3459 dbprint(p,dbprintWhitespace + "h is a constant. Returning 3460 immediately"); 3476 dbprint(p,dbprintWhitespace + "h is a constant. Returning immediately"); 3461 3477 return(list(list(h))); 3462 3478 } 3463 3479 def r = basering; 3464 3480 list factorizeOutput; 3465 if (size(ringlist(basering))<=4 )3481 if (size(ringlist(basering))<=4 && ( !(attrib(r, "isLetterplaceRing") >= 1) ) ) 3466 3482 {//commutative ring case 3467 dbprint(p,dbprintWhitespace + "We are in a commutative 3468 ring. Factoring h using factorize."); 3483 dbprint(p,dbprintWhitespace + "We are in a commutative ring. Factoring h using factorize."); 3469 3484 factorizeOutput = factorize(h); 3470 3485 }//commutative ring case 3471 3486 else 3472 3487 {//commutative subring case; 3473 dbprint(p,dbprintWhitespace + "We are in a commutative 3474 subring. Generating commutative ring.."); 3475 def rList = ringlist(basering); 3476 rList = delete(rList,5); 3477 rList = delete(rList,5); 3478 def tempRing = ring(rList); 3479 setring(tempRing); 3480 poly h = imap(r,h); 3481 dbprint(p, dbprintWhitespace+"Factoring h in commutative ring."); 3482 list tempResult = factorize(h); 3483 setring(r); 3484 factorizeOutput = imap(tempRing,tempResult); 3488 dbprint(p,dbprintWhitespace + "We are in a commutative subring. Generating commutative ring."); 3489 if ( !(attrib(r, "isLetterplaceRing") >= 1) ) 3490 {//Galgebra case 3491 def rList = ringlist(basering); 3492 rList = delete(rList,5); 3493 rList = delete(rList,5); 3494 def tempRing = ring(rList); 3495 setring(tempRing); 3496 poly h = imap(r,h); 3497 dbprint(p, dbprintWhitespace+"Factoring h in commutative ring."); 3498 list tempResult = factorize(h); 3499 setring(r); 3500 factorizeOutput = imap(tempRing,tempResult); 3501 }//Galgebra case 3502 else 3503 {//Letterplace case 3504 int theRightVar = lp2iv(h[1])[1]; 3505 list commFactInIv = list(); 3506 list tempMonomList = list(); 3507 def rList = ringlist(basering); 3508 rList[2] = list("@x"); 3509 rList[3] = list(list("dp", intvec(1)), 3510 list("C", 0)); 3511 def tempRing = ring(rList); 3512 setring(tempRing); 3513 ideal tempIdeal; 3514 for (i=1; i<=nvars(r); i++) 3515 {tempIdeal[i] = var(1);} 3516 map fromR = r, tempIdeal; 3517 poly h = fromR(h); 3518 dbprint(p, dbprintWhitespace+"Factoring h in commutative ring."); 3519 list tempResult = factorize(h); 3520 dbprint(p, dbprintWhitespace+"Done. The result is:"); 3521 dbprint(p, tempResult); 3522 dbprint(p, dbprintWhitespace+"Now translated into intvec representation:"); 3523 for (i = 1; i <= size(tempResult[1]); i++) 3524 {//translate all factorizations into lists of intvecs and coeffs 3525 commFactInIv[i] = list(); 3526 for (j = 1; j <= size(tempResult[1][i]); j++) 3527 {//iterate over each monomial 3528 commFactInIv[i][j] = list(leadcoef(tempResult[1][i][j])); 3529 if (deg(tempResult[1][i][j]) != 0) 3530 {//a power of @x 3531 commFactInIv[i][j] = commFactInIv[i][j] + list(theRightVar:deg(tempResult[1][i][j])); 3532 }//a power of @x 3533 }//iterate over each monomial 3534 }//translate all factorizations into lists of intvecs and coeffs 3535 dbprint(p, commFactInIv); 3536 setring(r); 3537 factorizeOutput = imap(tempRing,tempResult); 3538 list commFactInIv = imap(tempRing, commFactInIv); 3539 poly tempEntry; 3540 for (i = 1; i<=size(commFactInIv); i++) 3541 { 3542 tempEntry = 0; 3543 for (j=1; j<=size(commFactInIv[i]); j++) 3544 { 3545 if (size(commFactInIv[i][j]) == 1) 3546 {//simply a number 3547 tempEntry = tempEntry + commFactInIv[i][j][1]; 3548 }//simply a number 3549 else 3550 { 3551 tempEntry = tempEntry + commFactInIv[i][j][1]*iv2lp(commFactInIv[i][j][2]); 3552 } 3553 } 3554 factorizeOutput[1][i] = tempEntry; 3555 } 3556 }//Letterplace case 3485 3557 }//commutative subring case; 3486 dbprint(p,dbprintWhitespace + "Done commutatively factorizing. 3487 The result is:"); 3558 dbprint(p,dbprintWhitespace + "Done commutatively factorizing. The result isssssss:"); 3488 3559 dbprint(p,factorizeOutput); 3489 3560 dbprint(p,dbprintWhitespace+"Computing all permutations of this factorization."); … … 3526 3597 } 3527 3598 kill R; 3528 //Test 2: Noncommutative ring, constant3599 //Test 2: GAlgebra, constant 3529 3600 ring R = 0,(x,d),dp; 3530 3601 def r = nc_algebra(1,1); … … 3542 3613 } 3543 3614 kill r; kill R; 3544 //Test 3: Noncommutative ring, definitely commutative subring, irreducible3615 //Test 3: GAlgebra, definitely commutative subring, irreducible 3545 3616 ring R = 0,(x1,x2,d1,d2),dp; 3546 3617 def r = Weyl(); … … 3558 3629 } 3559 3630 kill r; kill R; 3560 //Test 4: Noncommutative ring, definitely commutative subring,3631 //Test 4: GAlgebra, definitely commutative subring, 3561 3632 //reducible 3562 3633 ring R = 0,(x1,x2,d1,d2),dp; … … 3579 3650 } 3580 3651 kill r; kill R; 3652 //Test 5: Letterplace ring, constant 3653 ring r = 0,(x,y,z),dp; 3654 int d =4; // degree bound 3655 def R = makeLetterplaceRing(d); 3656 setring R; 3657 list expected = list(list(poly(3445))); 3658 list obtained = factor_commutative(3445); 3659 if (!isListEqual(expected,obtained)) 3660 { 3661 print("Test 5 for factor_commutative failed."); 3662 print("Expected:\n"); 3663 print(expected); 3664 print("obtained:\n"); 3665 print(obtained); 3666 result = 0; 3667 } 3668 //Test 6: Letterplace ring, definitely commutative subring, irreducible 3669 expected = list(list(poly(1), x*x+ 2*x + 2)); 3670 obtained = factor_commutative(x*x+ 2*x + 2); 3671 if (!isListEqual(expected,obtained)) 3672 { 3673 print("Test 6 for factor_commutative failed."); 3674 print("Expected:\n"); 3675 print(expected); 3676 print("obtained:\n"); 3677 print(obtained); 3678 result = 0; 3679 } 3680 //Test 7: Letterplace ring, definitely commutative subring, 3681 //reducible 3682 expected = list(list(poly(1), x*x+ 2*x + 2, x*x 2*x  2), 3683 list(poly(1), x*x 2*x  2, x*x+ 2*x + 2)); 3684 obtained = factor_commutative((x*x+ 2*x + 2)*(x*x 2*x  2)); 3685 if (!isListEqual(expected,obtained)) 3686 { 3687 print("Test 7 for factor_commutative failed."); 3688 print("Expected:\n"); 3689 print(expected); 3690 print("obtained:\n"); 3691 print(obtained); 3692 result = 0; 3693 } 3694 //Test 8: Letterplace ring, using last variable 3695 expected = list(list(poly(1), z*z+ 2*z + 2, z*z  2*z  2), 3696 list(poly(1), z*z  2*z  2, z*z+ 2*z + 2)); 3697 obtained = factor_commutative((z*z+ 2*z + 2)*(z*z  2*z  2)); 3698 if (!isListEqual(expected,obtained)) 3699 { 3700 print("Test 8 for factor_commutative failed."); 3701 print("Expected:\n"); 3702 print(expected); 3703 print("obtained:\n"); 3704 print(obtained); 3705 result = 0; 3706 } 3581 3707 return(result); 3582 3708 }//testing factor_commutative … … 6730 6856 6731 6857 result = delete_duplicates_noteval_and_sort(result); 6732 //print(M);6733 6858 if (size(result) == 0) 6734 6859 {//no factorization found … … 6894 7019 } 6895 7020 hZeroinR = tempHList; 6896 //hBetweenDegrees = reverse(hBetweenDegrees);6897 7021 dbprint(p,dbprintWhitespace+" Done!"); 6898 7022 dbprint(p,dbprintWhitespace+" Moving everything into the ring K[theta]"); … … 8244 8368 list tempList = list(); 8245 8369 //First, we are going to deal with our most hated guys: The Coefficients. 8246 //8247 8370 dbprint(p,dbprintWhitespace + "We get all combinations for the coefficient of the 8248 8371 maximal homogeneous part"); … … 9746 9869 rlist[3][2][2]=intvec(0); 9747 9870 rlist = insert(rlist,ideal(0),3); 9748 //The following lines of code will become obsolete once bug #753 in9749 //Singular is fixed. Until then, this measure is unfortunately9750 //necessary.9751 //begin9752 intvec perms = 0:nvars(@r);9753 for (i =1; i<=nvars(@r);i++)9754 {//finding the right position of each input variable9755 for (j = 1; j<=size(inpList); j++)9756 {9757 if (var(i)==inpList[j])9758 {//found the correct spot9759 perms[i] = j;9760 break;9761 }//found the correct spot9762 }9763 }//finding the right position of each input variable9764 9871 def @r2 = ring(rlist); 9765 9872 setring(@r2); 9766 9873 def @r3 = Weyl(); 9767 9874 setring(@r3); 9768 ideal mappingIdeal; 9769 for (i = 1; i<=size(perms); i++) 9770 {//generating the mapping ideal 9771 if (perms[i]>0) 9772 {//only variables that are in the input list are permitted 9773 mappingIdeal[i] = var(perms[i]); 9774 }//only variables that are in the input list are permitted 9775 }//generating the mapping ideal 9776 map toR3 = @r, mappingIdeal; 9777 poly h = toR3(h); 9875 poly h = imap(@r,h); 9778 9876 list result = facWeyl(h); 9779 9877 setring(@r); 9780 ideal mappingIdeal; 9781 for (i = 1; i<=size(perms);i++) 9782 {//finding the correct permutation 9783 for (j = 1; j<=size(perms); j++) 9784 {//the spot needs to coincide 9785 if (perms[j]==i) 9786 {//found it 9787 mappingIdeal[i] = var(j); 9788 break; 9789 }//found it 9790 }//the spot needs to coincide 9791 }//finding the correct permutation 9792 map toR = @r3, mappingIdeal; 9793 list result = toR(result); 9794 //end 9795 //once bug is fixed, please uncomment the following lines and 9796 //discard the above 9797 /* def @r2 = ring(rlist); */ 9798 /* setring(@r2); */ 9799 /* def @r3 = Weyl(); */ 9800 /* setring(@r3); */ 9801 /* poly h = imap(@r,h); */ 9802 /* list result = facWeyl(h); */ 9803 /* setring(@r); */ 9804 /* list result = imap(@r3,result); */ 9878 list result = imap(@r3,result); 9805 9879 return(result); 9806 9880 }//proc facSubWeyl … … 10474 10548  We have n parameters q_1,..., q_n given. 10475 10549 10476 SEE ALSO: homogfac FirstQWeyl, homogfacFirstQWeyl_all10550 SEE ALSO: homogfacNthWeyl, homogfacFirstQWeyl, homogfacFirstQWeyl_all 10477 10551 " 10478 10552 {//proc homogfacNthQWeyl_all … … 11002 11076 for (i = 1; i<=voice;i++) 11003 11077 {dbprintWhitespace = dbprintWhitespace + " ";} 11004 dbprint(p,dbprintWhitespace + "Checking if the field fulfills 11078 dbprint(p,dbprintWhitespace + "Checking if the field fulfills\ 11005 11079 everything we assume."); 11006 11080 if (nvars(basering)<1) … … 11010 11084 if (minpoly !=0) 11011 11085 { 11012 ERROR("factorize does not support fields of type (p^n,a) ");11086 ERROR("factorize does not support fields of type (p^n,a) yet"); 11013 11087 return list(list()); 11014 11088 } 11015 11089 } 11016 dbprint(p,dbprintWhitespace + "Everything seems to be alright with 11090 dbprint(p,dbprintWhitespace + "Everything seems to be alright with\ 11017 11091 the ground field."); 11018 11092 if (deg(h)<=0) … … 11024 11098 dbprint(p,dbprintWhitespace+"Checking if a more improved algorithm\ 11025 11099 is available other than the naive ansatzmethod."); 11026 dbprint(p,dbprintWhitespace+"1. Checking if h in commutative 11027 (sub)ring"); 11100 dbprint(p,dbprintWhitespace+"1. Checking if h in commutative (sub)ring"); 11028 11101 if (isInCommutativeSubRing(h)) 11029 11102 {//h is in a commutative subring 11030 11103 return(factor_commutative(h)); 11031 11104 }//h is in a commutative subring 11032 dbprint(p,dbprintWhitespace+"h was not in a commutative 11105 dbprint(p,dbprintWhitespace+"h was not in a commutative\ 11033 11106 (sub)ring."); 11034 dbprint(p,dbprintWhitespace+"2. Checking if h is in WeylAlgebra 11035 over QQ"); 11107 dbprint(p,dbprintWhitespace+"2. Checking if h was in a letterplace ring"); 11108 if ( attrib(basering, "isLetterplaceRing") >= 1 ) 11109 { 11110 dbprint(p,dbprintWhitespace+ 11111 "We are indeed in a letterplace ring. Forwarding the computation " + 11112 "to ncfactorwithoutoptletterplace"); 11113 return(ncfactor_without_opt_letterplace(h)); 11114 } 11115 dbprint(p,dbprintWhitespace+"2. Checking if h is in WeylAlgebra over QQ"); 11036 11116 if (ncfactor_isWeyl()&&npars(basering)==0&&char(basering)==0) 11037 11117 { 11038 dbprint(p,dbprintWhitespace + "We are indeed in a Weyl11039 algebra. Forwarding computation to facWeyl");11118 dbprint(p,dbprintWhitespace + 11119 "We are indeed in a Weyl algebra. Forwarding computation to facWeyl"); 11040 11120 return(facWeyl(h)); 11041 11121 } 11042 11122 dbprint(p,dbprintWhitespace+"Our ring is not a Weyl algebra over QQ."); 11043 dbprint(p,dbprintWhitespace+"3. Checking if we are in a qWeyl 11044 algebra over QQ."); 11123 dbprint(p,dbprintWhitespace+"3. Checking if we are in a qWeyl algebra over QQ."); 11045 11124 if (ncfactor_isQWeyl()&&char(basering)==0) 11046 11125 { 11047 dbprint(p,dbprintWhitespace + "We are indeed in a qWeyl 11126 dbprint(p,dbprintWhitespace + "We are indeed in a qWeyl\ 11048 11127 algebra over QQ. Checking if homogeneous."); 11049 11128 if(homogwithorderNthWeyl(h)) 11050 11129 { 11051 dbprint(p,dbprintWhitespace+"h was homogeneous. Forwarding 11130 dbprint(p,dbprintWhitespace+"h was homogeneous. Forwarding\ 11052 11131 computation to homogfacqweyl."); 11053 11132 return(homogfacNthQWeyl_all(h)); … … 11055 11134 } 11056 11135 dbprint(p,dbprintWhitespace+"Our ring is not a qWeyl algebra."); 11057 dbprint(p,dbprintWhitespace+"4. Checking if h is in a subalgebra 11136 dbprint(p,dbprintWhitespace+"4. Checking if h is in a subalgebra\ 11058 11137 that resembles the Weyl algebra"); 11059 11138 if(isInWeylSubAlg(h)&&npars(basering)==0&&char(basering)==0) 11060 11139 { 11061 dbprint(p,dbprintWhitespace+"We are indeed in a subalgebra that is 11140 dbprint(p,dbprintWhitespace+"We are indeed in a subalgebra that is\ 11062 11141 isomorphic to a Weyl algebra. Forwarding to facSubWeyl."); 11063 11142 return(facSubWeyl(h)); 11064 11143 } 11065 dbprint(p,dbprintWhitespace+"No optimized algorithm available. Going 11144 dbprint(p,dbprintWhitespace+"No optimized algorithm available. Going \ 11066 11145 for the ansatz method without optimization."); 11067 11146 return(ncfactor_without_opt(h)); … … 11286 11365 { 11287 11366 print("Test 10 for ncfactor failed."); 11367 print("Expected:\n"); 11368 print(expected); 11369 print("obtained:\n"); 11370 print(obtained); 11371 result = 0; 11372 } 11373 kill r; 11374 //Test 11: Generic Letterplace example 11375 ring r = 0,(x,y,z),dp; 11376 int d =4; // degree bound 11377 def R = makeLetterplaceRing(d); 11378 setring R; 11379 poly f1 = 6*x*y*x + 9*x; 11380 list obtained = ncfactor(f1); 11381 list expected = sortFactorizations( 11382 list( 11383 list(number(3), x, 2*y*x + 3), 11384 list(number(3), 2*x*y + 3, x) 11385 )); 11386 if (!isListEqual(expected,obtained)) 11387 { 11388 print("Test 11 for ncfactor failed."); 11288 11389 print("Expected:\n"); 11289 11390 print(expected); … … 11984 12085 }//testing factorize_nc_s 11985 12086 12087 12088 static proc getMaxDegreeVecLetterPlace(poly h) 12089 "USAGE: getMaxDegreeVecLetterPlace(h); h is a polynomial in a 12090 Letterplace ring. 12091 RETURN: intvec 12092 PURPOSE: Returns for each variable in the ring the maximal 12093 degree in which it appears in h. 12094 ASSUMING: The basering is 12095 " 12096 {//proc getMaxDegreeVecLetterPlace 12097 int lv = attrib(basering, "isLetterplaceRing"); // nvars of orig ring 12098 if (h == 0) { return (0:lv); } 12099 intvec tempIntVec1 = 0:lv; 12100 intvec maxDegrees = 0:lv; 12101 intvec tempIntVec2; 12102 int i; int j; 12103 for (i = 1; i<=size(h); i++) 12104 {//going through each monomial in h and finding the degree in each var 12105 tempIntVec2 = lp2iv(h[i]); 12106 if (tempIntVec2 == 0) 12107 { 12108 i++; continue; 12109 } 12110 tempIntVec1 = 0:lv; 12111 for (j=1; j<=size(tempIntVec2); j++) 12112 {//filling in the number of occurrences 12113 tempIntVec1[tempIntVec2[j]] = tempIntVec1[tempIntVec2[j]] + 1; 12114 }//filling in the number of occurrences 12115 for (j = 1; j<=lv; j++) 12116 {//putting the max into maxDegrees 12117 maxDegrees[j] = max(maxDegrees[j], tempIntVec1[j]); 12118 }//putting the max into maxDegrees 12119 }//going through each monomial in h and finding the degree in each var 12120 return(maxDegrees); 12121 }//proc getMaxDegreeVecLetterPlace 12122 12123 static proc test_getMaxDegreeVecLetterPlace() 12124 {//testing getMaxDegreeVecLetterPlace 12125 int result = 1; 12126 ring r = 0,(x,y,z),dp; 12127 int d =4; // degree bound 12128 def R = makeLetterplaceRing(d); 12129 setring R; 12130 //Test 1: 0 12131 intvec expected = 0:3; 12132 intvec obtained = getMaxDegreeVecLetterPlace(0); 12133 if (expected!=obtained) 12134 { 12135 print("Test 1 for getMaxDegreeVecLetterPlace failed."); 12136 print("Expected:\n"); 12137 print(expected); 12138 print("obtained:\n"); 12139 print(obtained); 12140 result = 0; 12141 } 12142 //Test 2: Constant neq 0 12143 expected = 0:3; 12144 obtained = getMaxDegreeVecLetterPlace(3); 12145 if (expected!=obtained) 12146 { 12147 print("Test 2 for getMaxDegreeVecLetterPlace failed."); 12148 print("Expected:\n"); 12149 print(expected); 12150 print("obtained:\n"); 12151 print(obtained); 12152 result = 0; 12153 } 12154 //Test 3: univariate, first variable 12155 expected = 2, 0, 0; 12156 obtained = getMaxDegreeVecLetterPlace(5*x*x + x + 1); 12157 if (expected!=obtained) 12158 { 12159 print("Test 3 for getMaxDegreeVecLetterPlace failed."); 12160 print("Expected:\n"); 12161 print(expected); 12162 print("obtained:\n"); 12163 print(obtained); 12164 result = 0; 12165 } 12166 //Test 4: univariate, another variable 12167 expected = 0, 0, 3; 12168 obtained = getMaxDegreeVecLetterPlace(5*z*z*z + z*z + 1); 12169 if (expected!=obtained) 12170 { 12171 print("Test 4 for getMaxDegreeVecLetterPlace failed."); 12172 print("Expected:\n"); 12173 print(expected); 12174 print("obtained:\n"); 12175 print(obtained); 12176 result = 0; 12177 } 12178 //Test 5: random polynomial 12179 expected = 3, 1, 2; 12180 obtained = getMaxDegreeVecLetterPlace(2*x*y*x*x + 4*y*z*z); 12181 if (expected!=obtained) 12182 { 12183 print("Test 5 for getMaxDegreeVecLetterPlace failed."); 12184 print("Expected:\n"); 12185 print(expected); 12186 print("obtained:\n"); 12187 print(obtained); 12188 result = 0; 12189 } 12190 return(result); 12191 }//testing getMaxDegreeVecLetterPlace 12192 12193 static proc wordsWithMaxAppearance(intvec maxDegInCoordinates, int upToDeg) 12194 "USAGE: wordsWithMaxAppearance(maxDegInCoordinates); 12195 maxDegreeInCoordinates is an intvec. 12196 RETURN: list 12197 PURPOSE: maxDegInCoordinates is a vector representing 12198 the maximum times a variable is allowed to appear in a monomial in 12199 letterplace representation. This function computes all possible words 12200 given this restriction. 12201 ASSUME: maxDegInCoordinates only has nonnegative entries 12202 "{//wordsWithMaxAppearance 12203 int p=printlevelvoice+2;//for dbprint 12204 int i; int j; 12205 string dbprintWhitespace = ""; 12206 for (i = 1; i<=voice;i++) 12207 {dbprintWhitespace = dbprintWhitespace + " ";} 12208 list result; 12209 intvec tempMaxDegs; 12210 list recResult; 12211 for (i = 1; i<=size(maxDegInCoordinates); i++) 12212 {//For each coordinate not equal to zero, do a recursive call and concatenate 12213 if (maxDegInCoordinates[i] <= 0) 12214 {//Done with coordinate i 12215 i++; continue; 12216 }//Done with coordinate i 12217 tempMaxDegs = maxDegInCoordinates; 12218 tempMaxDegs[i] = tempMaxDegs[i]  1; 12219 recResult = wordsWithMaxAppearance(tempMaxDegs, upToDeg); 12220 if (size(recResult) == 0 && upToDeg>=1) 12221 {//Single entry just needs to be there 12222 result = result + list(intvec(i)); 12223 }//Single entry just needs to be there 12224 result = result + recResult; 12225 for (j = 1; j<=size(recResult); j++) 12226 {//concatenate i to all elements in recResult 12227 if (size(recResult[j]) + 1 <= upToDeg) 12228 {//only concatenate if uptodeg is not exceeded 12229 recResult[j] = intvec(i, recResult[j]); 12230 }//only concatenate if uptodeg is not exceeded 12231 }//concatenate i to all elements in recResult 12232 result = result + recResult; 12233 }//For each coordinate not equal to zero, do a recursive call and concatenate 12234 return(delete_duplicates_noteval_and_sort(result)); 12235 }//wordsWithMaxAppearance 12236 12237 static proc test_wordsWithMaxAppearance() 12238 {//test_wordsWithMaxAppearance 12239 int result = 1; 12240 //Test 1: 0 intvec 12241 list expected = list(); 12242 list obtained = wordsWithMaxAppearance(intvec(0), 4); 12243 if (!isListEqual(expected,obtained)) 12244 { 12245 print("Test 1 for wordsWithMaxAppearance failed."); 12246 print("Expected:\n"); 12247 print(expected); 12248 print("obtained:\n"); 12249 print(obtained); 12250 result = 0; 12251 } 12252 //Test 2: 0 multiple entries intvec 12253 expected = list(); 12254 obtained = wordsWithMaxAppearance(0:10, 4); 12255 if (!isListEqual(expected,obtained)) 12256 { 12257 print("Test 2 for wordsWithMaxAppearance failed."); 12258 print("Expected:\n"); 12259 print(expected); 12260 print("obtained:\n"); 12261 print(obtained); 12262 result = 0; 12263 } 12264 //Test 3: Single letter 12265 expected = list(intvec(4)); 12266 obtained = wordsWithMaxAppearance(intvec(0, 0, 0, 1, 0, 0), 4); 12267 if (!isListEqual(expected,obtained)) 12268 { 12269 print("Test 3 for wordsWithMaxAppearance failed."); 12270 print("Expected:\n"); 12271 print(expected); 12272 print("obtained:\n"); 12273 print(obtained); 12274 result = 0; 12275 } 12276 //Test 4: Two letters, one appearance 12277 expected = list(intvec(3), intvec(3,4), intvec(4), intvec(4,3)); 12278 obtained = wordsWithMaxAppearance(intvec(0, 0, 1, 1, 0, 0), 4); 12279 if (!isListEqual(expected,obtained)) 12280 { 12281 print("Test 4 for wordsWithMaxAppearance failed."); 12282 print("Expected:\n"); 12283 print(expected); 12284 print("obtained:\n"); 12285 print(obtained); 12286 result = 0; 12287 } 12288 //Test 5: One letter, degree 2 12289 expected = list(intvec(4), intvec(4,4)); 12290 obtained = wordsWithMaxAppearance(intvec(0, 0, 0, 2, 0, 0), 4); 12291 if (!isListEqual(expected,obtained)) 12292 { 12293 print("Test 5 for wordsWithMaxAppearance failed."); 12294 print("Expected:\n"); 12295 print(expected); 12296 print("obtained:\n"); 12297 print(obtained); 12298 result = 0; 12299 } 12300 //Test 6: random example 12301 expected = list(intvec(1), 12302 intvec(1,4), 12303 intvec(1,4,4), 12304 intvec(4), 12305 intvec(4,1), 12306 intvec(4,1,4), 12307 intvec(4,4), 12308 intvec(4,4,1)); 12309 obtained = wordsWithMaxAppearance(intvec(1, 0, 0, 2, 0, 0), 4); 12310 if (!isListEqual(expected,obtained)) 12311 { 12312 print("Test 6 for wordsWithMaxAppearance failed."); 12313 print("Expected:\n"); 12314 print(expected); 12315 print("obtained:\n"); 12316 print(obtained); 12317 result = 0; 12318 } 12319 return(result); 12320 }//test_wordsWithMaxAppearance 12321 12322 static proc monsSmallerThanLetterPlace(poly e, intvec maxDegInCoordinates, int upToDeg) 12323 "USAGE: monsSmallerThanLetterPlace(e, maxDegInCoordinates); e is a 12324 monomial. 12325 maxDegreeInCoordinates encodes the maximal degree we wish to encounter 12326 in each variable. 12327 RETURN: list 12328 PURPOSE: Computes all monomials in the basering which are degreewise 12329 smaller than the leading monomial of e. 12330 "{//monsSmallerThanLetterPlace 12331 int p=printlevelvoice+2;//for dbprint 12332 int i; 12333 string dbprintWhitespace = ""; 12334 for (i = 1; i<=voice;i++) 12335 {dbprintWhitespace = dbprintWhitespace + " ";} 12336 list result; 12337 int maxLen = min(sum(maxDegInCoordinates), lpDegBound(basering)); 12338 dbprint(p,dbprintWhitespace + "maxLength: " + string(maxLen)); 12339 list allPossibilities = wordsWithMaxAppearance(maxDegInCoordinates, upToDeg); 12340 dbprint(p,dbprintWhitespace + "words with max appearance: " + string(allPossibilities)); 12341 poly candidate; 12342 intvec candidateMaxDeg; 12343 for (i = 1; i<=size(allPossibilities); i++) 12344 {//checking for monomials with smaller degree than e 12345 candidate = iv2lp(allPossibilities[i]); 12346 dbprint(p,dbprintWhitespace + "Checking candidate: " + string(candidate)); 12347 candidateMaxDeg = getMaxDegreeVecLetterPlace(candidate); 12348 if (candidate < e && candidateMaxDeg <= maxDegInCoordinates) 12349 {//successfully found a candidate 12350 result = insert(result, candidate); 12351 }//successfully found a candidate 12352 }//checking for monomials with smaller degree than e 12353 return(result); 12354 }//monsSmallerThanLetterPlace 12355 12356 static proc test_monsSmallerThanLetterPlace() 12357 {//test_monsSmallerThanLetterPlace 12358 int result = 1; 12359 ring r = 0,(x,y,z,d,w),dp; 12360 int upToDegBound = 10; // degree bound 12361 def R = makeLetterplaceRing(upToDegBound); 12362 setring R; 12363 //Test 1: 0, 0 12364 poly input1 = 0; 12365 intvec input2 = intvec(0,0,0,0,0); 12366 list expected = list(); 12367 list obtained = monsSmallerThanLetterPlace(input1, input2, upToDegBound); 12368 if (!isListEqual(expected,obtained)) 12369 { 12370 print("Test 1 for monsSmallerThanLetterPlace failed."); 12371 print("Expected:\n"); 12372 print(expected); 12373 print("obtained:\n"); 12374 print(obtained); 12375 result = 0; 12376 } 12377 //Test 2: 0, nontrivial maxdegree 12378 input1 = 0; 12379 input2 = intvec(0,0,2,1,0); 12380 expected = list(); 12381 obtained = monsSmallerThanLetterPlace(input1, input2, upToDegBound ); 12382 if (!isListEqual(expected,obtained)) 12383 { 12384 print("Test 2 for monsSmallerThanLetterPlace failed."); 12385 print("Expected:\n"); 12386 print(expected); 12387 print("obtained:\n"); 12388 print(obtained); 12389 result = 0; 12390 } 12391 //Test 3: constant, nontrivial maxdegree 12392 input1 = 7; 12393 input2 = intvec(0,0,2,1,0); 12394 expected = list(); 12395 obtained = monsSmallerThanLetterPlace(input1, input2, upToDegBound); 12396 if (!isListEqual(expected,obtained)) 12397 { 12398 print("Test 3 for monsSmallerThanLetterPlace failed."); 12399 print("Expected:\n"); 12400 print(expected); 12401 print("obtained:\n"); 12402 print(obtained); 12403 result = 0; 12404 } 12405 //Test 4: single variable smallest, nontrivial maxdegree 12406 input1 = w; 12407 input2 = intvec(0,0,2,1,0); 12408 expected = list(); 12409 obtained = monsSmallerThanLetterPlace(input1, input2, upToDegBound ); 12410 if (!isListEqual(expected,obtained)) 12411 { 12412 print("Test 4 for monsSmallerThanLetterPlace failed."); 12413 print("Expected:\n"); 12414 print(expected); 12415 print("obtained:\n"); 12416 print(obtained); 12417 result = 0; 12418 } 12419 //Test 5: single variable highest, nontrivial maxdegree 12420 input1 = x; 12421 input2 = intvec(0,0,2,1,0); 12422 expected = list(d, z); 12423 obtained = monsSmallerThanLetterPlace(input1, input2, upToDegBound); 12424 if (!isListEqual(expected,obtained)) 12425 { 12426 print("Test 5 for monsSmallerThanLetterPlace failed."); 12427 print("Expected:\n"); 12428 print(expected); 12429 print("obtained:\n"); 12430 print(obtained); 12431 result = 0; 12432 } 12433 //Test 6: single variable highest, nontrivial maxdegree 12434 input1 = x; 12435 input2 = intvec(0,0,2,1,0); 12436 expected = list(d, z); 12437 obtained = monsSmallerThanLetterPlace(input1, input2, upToDegBound ); 12438 if (!isListEqual(expected,obtained)) 12439 { 12440 print("Test 6 for monsSmallerThanLetterPlace failed."); 12441 print("Expected:\n"); 12442 print(expected); 12443 print("obtained:\n"); 12444 print(obtained); 12445 result = 0; 12446 } 12447 //Test 7: nontrivial monomial, nontrivial maxdegree 12448 input1 = z*z*d*d; 12449 input2 = intvec(0,0,2,1,0); 12450 expected = list(d*z*z, 12451 d*z, 12452 d, 12453 z*d*z, 12454 z*d, 12455 z*z*d, 12456 z*z, 12457 z); 12458 obtained = monsSmallerThanLetterPlace(input1, input2, upToDegBound); 12459 if (!isListEqual(expected,obtained)) 12460 { 12461 print("Test 7 for monsSmallerThanLetterPlace failed."); 12462 print("Expected:\n"); 12463 print(expected); 12464 print("obtained:\n"); 12465 print(obtained); 12466 result = 0; 12467 } 12468 return(result); 12469 }//test_monsSmallerThanLetterPlace 12470 12471 static proc ncfactor_letterplace_poly_s(poly h) 12472 "USAGE: ncfactor_letterplace_poly_s(h); h is a polynomial in a 12473 letterplace algebra 12474 RETURN: list(list) 12475 PURPOSE: Compute all factorizations of h 12476 THEORY: Implements an ansatzdriven factorization method as outlined 12477 by Bell, Heinle and Levandovskyy in \"On Noncommutative Finite 12478 Factorization Domains\". 12479 ASSUME: 12480  basering is a Letterplace ring 12481  basefield is such, that factorize() can factor any univariate and 12482 multivariate commutative polynomial over it. 12483  h is not a constant or 0. 12484 NOTE: 12485  Every entry of the output list is a list with factors for one possible factorization. 12486 The first factor is always a constant (1, if no nontrivial constant 12487 could be excluded). 12488 SEE ALSO: ncfactor 12489 "{//proc ncfactor_letterplace_poly_s 12490 int p=printlevelvoice+2;//for dbprint 12491 int i; int j; int k; int l; 12492 string dbprintWhitespace = ""; 12493 for (i = 1; i<=voice;i++) 12494 {dbprintWhitespace = dbprintWhitespace + " ";} 12495 list result; 12496 // Producing the set M of the paper (permutation of the variables in 12497 // the leading monomial) 12498 dbprint(p,dbprintWhitespace + "Generating the set M."); 12499 def r = basering; 12500 intvec maxDegrees = getMaxDegreeVecLetterPlace(h); 12501 dbprint(p,dbprintWhitespace + "The maximum degrees for each var are given by: "+ 12502 string(maxDegrees)); 12503 intvec expVec = lp2iv(leadmonom(h)); 12504 dbprint(p, dbprintWhitespace + "The leading monomial of h is: " + string(expVec)); 12505 list M; 12506 for (i = 1; i<size(expVec); i++) 12507 {//The set M consists of all posssible twowordcombinations of the leading monomial 12508 M = M + list(list(intvec(expVec[1..i]), intvec(expVec[i+1..size(expVec)]))); 12509 } 12510 dbprint(p,dbprintWhitespace+"The set M is:"); 12511 dbprint(p, M); 12512 list list_UpToA; 12513 list list_UpToB; 12514 list tempSringlist = ringlist(r); 12515 list clearSlateRingList = ringlist(r); 12516 clearSlateRingList[2] = list(); 12517 clearSlateRingList[3] = list(); 12518 if (size(clearSlateRingList) == 6) 12519 {//some noncommutative relations defined 12520 clearSlateRingList = delete(clearSlateRingList, 6); 12521 clearSlateRingList = delete(clearSlateRingList, 5); 12522 } 12523 else 12524 {//It is still possible that we have a 5th entry 12525 if (size(clearSlateRingList) == 5) 12526 { 12527 clearSlateRingList = delete(clearSlateRingList, 5); 12528 } 12529 } 12530 intvec tempIntVec; 12531 def S; def W; def W2; 12532 list MEntry; 12533 poly tempA; 12534 poly tempB; 12535 int filterFlag; 12536 int jj = 1; int sizeOfSol = 1; 12537 for (i = 1; i<=size(M); i++) 12538 {//Iterating over all twocombinations in the set M 12539 MEntry = M[i]; 12540 tempA = iv2lp(MEntry[1]); 12541 tempB = iv2lp(MEntry[2]); 12542 dbprint(p,dbprintWhitespace + "The potential leading combination of a is " + string(tempA)); 12543 dbprint(p,dbprintWhitespace + "The potential leading combination of b is " + string(tempB)); 12544 dbprint(p,dbprintWhitespace + "Calculating the monomials smaller than A"); 12545 list_UpToA = monsSmallerThanLetterPlace(leadmonom(tempA), 12546 maxDegrees  getMaxDegreeVecLetterPlace(tempB), 12547 lpDegBound(r)); 12548 dbprint(p,dbprintWhitespace + "Done, they are: " + string(list_UpToA)); 12549 dbprint(p,dbprintWhitespace + "Calculating the monomials smaller than B"); 12550 list_UpToB = monsSmallerThanLetterPlace(leadmonom(tempB), 12551 maxDegrees  getMaxDegreeVecLetterPlace(tempA), 12552 lpDegBound(r)); 12553 dbprint(p,dbprintWhitespace + "Done, they are: " + string(list_UpToB)); 12554 //we need to filter out lm(tempA) and lm(tempB); 12555 for (k = size(list_UpToA); k>0; k) 12556 {//removing the leading monomial from list_UpToA and invalid parts 12557 if (list_UpToA[k] == leadmonom(tempA)) 12558 {//found it 12559 list_UpToA = delete(list_UpToA,k); 12560 continue; 12561 }//found it 12562 if(sum(getMaxDegreeVecLetterPlace(h)) < sum(getMaxDegreeVecLetterPlace(list_UpToA[k]))) 12563 {//total degree exceeds 12564 list_UpToA = delete(list_UpToA,k); 12565 continue; 12566 }//total degree exceeds 12567 }//removing the leading monomial from list_UpToA and invalid parts 12568 for (k = size(list_UpToB); k>0; k) 12569 {//removing the leading monomial from list_UpToA 12570 if (list_UpToB[k] == leadmonom(tempB)) 12571 {//found it 12572 list_UpToB = delete(list_UpToB,k); 12573 continue; 12574 }//found it 12575 if(sum(getMaxDegreeVecLetterPlace(h)) < sum(getMaxDegreeVecLetterPlace(list_UpToB[k]))) 12576 {//total degree exceeds 12577 list_UpToB = delete(list_UpToB,k); 12578 continue; 12579 }//total degree exceeds 12580 }//removing the leading monomial from list_UpToA 12581 if (typeof(tempSringlist[1]) == "int") 12582 {//No extra parameters in the original ring 12583 tempSringlist[1] = list(tempSringlist[1],list(), list(list())); 12584 }//No extra parameters in the original ring 12585 for (k = size(list_UpToB)+1; k>=0; k) 12586 {//fill in bcoefficients as variables 12587 tempSringlist[1][2] = insert(tempSringlist[1][2],"@b("+string(k)+")"); 12588 clearSlateRingList[2] = insert(clearSlateRingList[2],"@b("+string(k)+")"); 12589 }//fill in bcoefficients as variables 12590 for (k = size(list_UpToA); k>=0; k) 12591 {//fill in acoefficients as variables 12592 tempSringlist[1][2] = insert(tempSringlist[1][2],"@a("+string(k)+")"); 12593 clearSlateRingList[2] = insert(clearSlateRingList[2], "@a("+string(k)+")"); 12594 }//fill in acoefficients as variables 12595 tempIntVec = 0; 12596 for(k=1; k<=size(list_UpToA) + size(list_UpToB)+3; k++) 12597 {tempIntVec[k] = 1;} 12598 clearSlateRingList[3] = 12599 list(list("lp",tempIntVec),list("C",intvec(0))); 12600 if (size(tempSringlist[1][3][1]) == 0) 12601 {//No values in there before 12602 tempSringlist[1][3][1] = 12603 list("lp", tempIntVec); 12604 tempSringlist[1][4] = ideal(0); 12605 }//No values in there before 12606 else 12607 {//there were other parameters 12608 tempSringlist[1][3][1][2] = tempSringlist[1][3][1][2], tempIntVec; 12609 }//there were other parameters 12610 attrib(tempSringlist, "isLetterplaceRing", attrib(r,"isLetterplaceRing")); 12611 attrib(tempSringlist, "maxExp", 1); 12612 if (defined(S)) { 12613 kill S; 12614 } 12615 def S = ring(tempSringlist); setring S; 12616 attrib(S, "uptodeg", lpDegBound(r)); 12617 attrib(S, "isLetterplaceRing", attrib(r,"isLetterplaceRing")); 12618 dbprint(p,dbprintWhitespace+"Done generating ring S:"); 12619 dbprint(p,dbprintWhitespace+string(S)); 12620 dbprint(p,dbprintWhitespace+"Generate the ansatz."); 12621 dbprint(p,dbprintWhitespace+"The new ring is: " + string(basering)); 12622 setring(S); 12623 poly h = imap(r, h); 12624 poly a = imap(r,tempA); 12625 poly b = imap(r,tempB); 12626 if (!defined(list_UpToA)) 12627 {list list_UpToA = imap(r,list_UpToA);} 12628 if (!defined(list_UpToB)) 12629 {list list_UpToB = imap(r,list_UpToB);} 12630 b = b*par(size(list_UpToA)+size(list_UpToB)+3); 12631 for (k = size(list_UpToB); k>0; k) 12632 {b = b + par(size(list_UpToA)+2+k)*list_UpToB[k];} 12633 b = b + par(size(list_UpToA) + 2); 12634 dbprint(p,dbprintWhitespace + "The ansatz for b is " + string(b)); 12635 for (k = size(list_UpToA); k>0; k) 12636 {a = a + par(k+1)*list_UpToA[k];} 12637 a = a + par(1); 12638 dbprint(p,dbprintWhitespace + "The ansatz for a is " + string(a)); 12639 poly ansatzPoly = a*b  h; 12640 dbprint(p,dbprintWhitespace + "The ansatzpoly is " + string(ansatzPoly)); 12641 ideal listOfRelations = coeffs(ansatzPoly, var(1)); 12642 for (k = 2;k<=nvars(r);k++) 12643 {listOfRelations = coeffs(listOfRelations,var(k));} 12644 setring(r); 12645 W = ring(clearSlateRingList); // comm ring of coeffs of the ansatz 12646 W2 = W+r; // first coeffs, then orig letterplace vars 12647 setring(W); 12648 ideal listOfRelations = imap(S, listOfRelations); 12649 option(redSB); 12650 option(redTail); 12651 dbprint(p,dbprintWhitespace + "Calculating the solutions of:"); 12652 dbprint(p,listOfRelations); 12653 if (!defined(sol)) 12654 { 12655 def sol = facstd(listOfRelations); 12656 } 12657 else 12658 { 12659 sol = facstd(listOfRelations); 12660 } 12661 dbprint(p,dbprintWhitespace + "Filtering the solutions that are " + 12662 "not in the basefield."); 12663 for(k = 1; k <=size(sol);k++) 12664 {//filtering what is not in the groundfield 12665 filterFlag = 0; 12666 for (l=1; l<=size(sol[k]); l++) 12667 { 12668 if ((deg(sol[k][l])>1) or ((sol[k][l]/leadcoef(sol[k][l])==1))) 12669 {//Not in the ground field 12670 filterFlag = 1; 12671 break; 12672 }//Not in the ground field 12673 } 12674 if (filterFlag or (vdim(std(sol[k]))<0)) 12675 {//In this case, we can delete that whole entry and move on 12676 sol= delete(sol,k); 12677 continue; 12678 }//In this case, we can delete that whole entry and move on 12679 }//filtering what is not in the groundfield 12680 dbprint(p,dbprintWhitespace + "Solutions for the coefficients are:"); 12681 dbprint(p,sol); 12682 setring S; 12683 ideal a_coef; jj=1; 12684 while (a[jj]!=0) 12685 { 12686 a_coef[jj]=leadcoef(a[jj]); 12687 jj++; 12688 } 12689 ideal b_coef; 12690 jj=1; 12691 while (b[jj]!=0) 12692 { 12693 b_coef[jj]=leadcoef(b[jj]); 12694 jj++; 12695 } 12696 setring W; //W = ring of coeffs_variables 12697 ideal a_coef = imap(S, a_coef); 12698 ideal b_coef = imap(S, b_coef); 12699 sizeOfSol = size(sol); 12700 if (!defined(tempResultCoeffs)) { 12701 list tempResultCoeffs; 12702 } 12703 tempResultCoeffs = list(); 12704 for (k=1; k<=sizeOfSol; k++) 12705 { 12706 sol[k] = std(sol[k]); 12707 tempResultCoeffs = insert(tempResultCoeffs, list( 12708 NF(a_coef, sol[k]), // elementwise 12709 NF(b_coef, sol[k]))); // elementwise 12710 } 12711 setring S; 12712 if(!defined(tempResultCoeffs)) { 12713 list tempResultCoeffs = imap(W, tempResultCoeffs); 12714 } 12715 if (!(defined(tempResult))) 12716 {list tempResult;} 12717 poly ared; 12718 poly bred; 12719 for (k = 1; k <= size(tempResultCoeffs); k++) 12720 {//Creating the resulting polynomials with the respective coeffs. 12721 jj=1; 12722 ared=0; 12723 bred=0; 12724 while (a[jj]!=0) 12725 {//Going through all monomials of a 12726 ared= ared+leadcoef(tempResultCoeffs[k][1][jj])*leadmonom(a[jj]); 12727 jj++; 12728 }//Going through all monomials of a 12729 jj=1; 12730 while (b[jj]!=0) 12731 {//Going through all monomials of b 12732 bred= bred+leadcoef(tempResultCoeffs[k][2][jj])*leadmonom(b[jj]); 12733 jj++; 12734 }//Going through all monomials of b 12735 tempResult = insert(tempResult,list(ared,bred)); 12736 }//Creating the resulting polynomials with the respective coeffs. 12737 setring(r); 12738 if (!defined(tempResult)) 12739 {def tempResult = imap(S,tempResult);} 12740 for (k=1; k<= size(tempResult);k++) 12741 { 12742 result = insert(result,tempResult[k]); 12743 } 12744 kill tempResult; 12745 clearSlateRingList[2] = list(); 12746 clearSlateRingList[3] = list(); 12747 tempSringlist = ringlist(r); 12748 }//Iterating over all twocombinations in the set M 12749 if(size(result)==0) 12750 { 12751 return (list(list(h))); 12752 } 12753 return(delete_duplicates_noteval_and_sort(result)); 12754 }//proc ncfactor_letterplace_poly_s 12755 12756 12757 static proc test_ncfactor_letterplace_poly_s() 12758 "Tests the basic functionality." 12759 {//proc test_ncfactor_letterplace_poly_s() 12760 int result = 1; 12761 ring r = 0,(x,y,z),dp; 12762 int d =4; // degree bound 12763 def R = makeLetterplaceRing(d); 12764 setring R; 12765 //TEST 1: power of 2 12766 poly f1 = (x + y)*(x + y); 12767 list obtained = ncfactor_letterplace_poly_s(f1); 12768 list expected = sortFactorizations( 12769 list( 12770 list(x + y, x + y) 12771 )); 12772 if (!isListEqual(expected,obtained)) 12773 { 12774 print("Test 1 for ncfactor_letterplace_poly_s failed."); 12775 print("Expected:\n"); 12776 print(expected); 12777 print("obtained:\n"); 12778 print(obtained); 12779 result = 0; 12780 } 12781 //TEST 2: Monomial 12782 f1 = x*z; 12783 obtained = ncfactor_letterplace_poly_s(f1); 12784 expected = sortFactorizations( 12785 list( 12786 list(x, z) 12787 )); 12788 if (!isListEqual(expected,obtained)) 12789 { 12790 print("Test 2 for ncfactor_letterplace_poly_s failed."); 12791 print("Expected:\n"); 12792 print(expected); 12793 print("obtained:\n"); 12794 print(obtained); 12795 result = 0; 12796 } 12797 //TEST 3: Generic product with all variables 12798 f1 = (x*y + z*x)*(x+ z+ y); 12799 obtained = ncfactor_letterplace_poly_s(f1); 12800 expected = sortFactorizations( 12801 list( 12802 list( 12803 x*y + z*x, 12804 x+ z+ y)) 12805 ); 12806 if (!isListEqual(expected,obtained)) 12807 { 12808 print("Test 3 for ncfactor_letterplace_poly_s failed."); 12809 print("Expected:\n"); 12810 print(expected); 12811 print("obtained:\n"); 12812 print(obtained); 12813 result = 0; 12814 } 12815 //TEST 4: More than one factorization 12816 f1 = x*y*x + x; 12817 obtained = ncfactor_letterplace_poly_s(f1); 12818 expected = sortFactorizations( 12819 list( 12820 list(x, y*x + 1), 12821 list(x*y + 1, x)) 12822 ); 12823 if (!isListEqual(expected,obtained)) 12824 { 12825 print("Test 4 for ncfactor_letterplace_poly_s failed."); 12826 print("Expected:\n"); 12827 print(expected); 12828 print("obtained:\n"); 12829 print(obtained); 12830 result = 0; 12831 } 12832 return (result); 12833 }//proc test_ncfactor_letterplace_poly_s() 12834 12835 static proc ncfactor_without_opt_letterplace(poly h) 12836 "USAGE: ncfactor_without_opt_letterplace(h); h is a polynomial in a 12837 letterplace ring over a field k. 12838 RETURN: list(list) 12839 PURPOSE: Compute all factorizations of h, without making any 12840 sanitychecks 12841 THEORY: Implements an ansatzdriven factorization method as outlined 12842 by Bell, Heinle and Levandovskyy in \"On Noncommutative Finite 12843 Factorization Domains\". 12844 ASSUME: 12845  the basering is a Letterplace ring. 12846  k is a ring, such that factorize can factor any univariate and 12847 multivariate commutative polynomial over k. 12848  There exists at least one variable in the ring. 12849  h is not a constant or 0. 12850 NOTE: 12851  Every entry of the output list is a list with factors for one possible factorization. 12852 The first factor is always a constant (1, if no nontrivial constant 12853 could be excluded). 12854 SEE ALSO: facWeyl, facSubWeyl, testNCfac, ncfactor 12855 "{//ncfactor_without_opt_letterplace 12856 int p = printlevelvoice+2; 12857 int i; int j; int k; int l; 12858 string dbprintWhitespace = ""; 12859 for (i = 1; i<=voice;i++) 12860 {dbprintWhitespace = dbprintWhitespace + " ";} 12861 number commonCoefficient = content(h); 12862 poly hath = h/commonCoefficient; 12863 dbprint(p,dbprintWhitespace + "Calculating all possibilities of h as 12864 a combination of two factors."); 12865 list result = ncfactor_letterplace_poly_s(hath); 12866 result = delete_duplicates_noteval_and_sort(result); 12867 dbprint(p,dbprintWhitespace + "Done. The result is:"); 12868 dbprint(p,result); 12869 dbprint(p,dbprintWhitespace+"Recursively check factors for 12870 irreducibility"); 12871 list recursivetemp; 12872 int changedSomething; 12873 for(i = 1; i<=size(result);i++) 12874 {//recursively factorize factors 12875 if(size(result[i])>1) 12876 {//Nontrivial factorization 12877 for (j=1;j<=size(result[i]);j++) 12878 {//Factorize every factor 12879 recursivetemp = ncfactor_letterplace_poly_s(result[i][j]); 12880 recursivetemp = delete_duplicates_noteval(recursivetemp); 12881 changedSomething = 0; 12882 for(k=1; k<=size(recursivetemp);k++) 12883 {//insert factorized factors 12884 if(size(recursivetemp[k])>1) 12885 {//nontrivial 12886 changedSomething = 1; 12887 result = insert(result,result[i],i); 12888 for(l = size(recursivetemp[k]);l>=1;l) 12889 { 12890 result[i+1] = insert(result[i+1],recursivetemp[k][l],j); 12891 } 12892 result[i+1] = delete(result[i+1],j); 12893 }//nontrivial 12894 }//insert factorized factors 12895 if (changedSomething) 12896 {break;} 12897 }//Factorize every factor 12898 if(changedSomething) 12899 { 12900 result = delete(result,i); 12901 continue; 12902 } 12903 }//Nontrivial factorization 12904 }//recursively factorize factors 12905 dbprint(p,dbprintWhitespace +" Done"); 12906 dbprint(p,dbprintWhitespace + "Removing duplicates from the list"); 12907 result = delete_duplicates_noteval_and_sort(result); 12908 for (i = 1; i<=size(result);i++) 12909 {//Putting the content everywhere 12910 result[i] = insert(result[i],commonCoefficient); 12911 }//Putting the content everywhere 12912 result = normalizeFactors(result); 12913 result = delete_duplicates_noteval_and_sort(result); 12914 dbprint(p,dbprintWhitespace +" Done"); 12915 return(result); 12916 }//ncfactor_without_opt_letterplace 12917 12918 static proc test_ncfactor_without_opt_letterplace() 12919 "Tests the basic functionality." 12920 {//test_ncfactor_without_opt_letterplace 12921 int result = 1; 12922 ring r = 0,(x,y,z),dp; 12923 int d =4; // degree bound 12924 def R = makeLetterplaceRing(d); 12925 setring R; 12926 //TEST 1: power of 2 12927 poly f1 = 4*(x + y)*(x + y); 12928 list obtained = ncfactor_without_opt_letterplace(f1); 12929 list expected = sortFactorizations( 12930 list( 12931 list(number(4), x + y, x + y) 12932 )); 12933 if (!isListEqual(expected,obtained)) 12934 { 12935 print("Test 1 for ncfactor_without_opt_letterplace failed."); 12936 print("Expected:\n"); 12937 print(expected); 12938 print("obtained:\n"); 12939 print(obtained); 12940 result = 0; 12941 } 12942 //TEST 2: Monomial 12943 f1 = 11*x*z; 12944 obtained = ncfactor_without_opt_letterplace(f1); 12945 expected = sortFactorizations( 12946 list( 12947 list(number(11), x, z) 12948 )); 12949 if (!isListEqual(expected,obtained)) 12950 { 12951 print("Test 2 for ncfactor_without_opt_letterplace failed."); 12952 print("Expected:\n"); 12953 print(expected); 12954 print("obtained:\n"); 12955 print(obtained); 12956 result = 0; 12957 } 12958 //TEST 3: Generic product with all variables 12959 f1 = (2*x*y + 4*z*x)*(x+z+y); 12960 obtained = ncfactor_without_opt_letterplace(f1); 12961 expected = sortFactorizations( 12962 list( 12963 list(number(2), x*y + 2*z*x, x+z+y) 12964 )); 12965 if (!isListEqual(expected,obtained)) 12966 { 12967 print("Test 3 for ncfactor_without_opt_letterplace failed."); 12968 print("Expected:\n"); 12969 print(expected); 12970 print("obtained:\n"); 12971 print(obtained); 12972 result = 0; 12973 } 12974 //TEST 4: More than one factorization 12975 f1 = 6*x*y*x + 9*x; 12976 obtained = ncfactor_without_opt_letterplace(f1); 12977 expected = sortFactorizations( 12978 list( 12979 list(number(3), x, 2*y*x + 3), 12980 list(number(3), 2*x*y + 3, x) 12981 )); 12982 if (!isListEqual(expected,obtained)) 12983 { 12984 print("Test 4 for ncfactor_without_opt_letterplace failed."); 12985 print("Expected:\n"); 12986 print(expected); 12987 print("obtained:\n"); 12988 print(obtained); 12989 result = 0; 12990 } 12991 //Test 5: At least one recursive call 12992 f1 = f1*(x + y); 12993 obtained = ncfactor_without_opt_letterplace(f1); 12994 expected = sortFactorizations( 12995 list( 12996 list(number(3), x, 2*y*x + 3, x + y), 12997 list(number(3), 2*x*y + 3, x, x + y) 12998 )); 12999 if (!isListEqual(expected,obtained)) 13000 { 13001 print("Test 5 for ncfactor_without_opt_letterplace failed."); 13002 print("Expected:\n"); 13003 print(expected); 13004 print("obtained:\n"); 13005 print(obtained); 13006 result = 0; 13007 } 13008 return (result); 13009 }//test_ncfactor_without_opt_letterplace 13010 13011 11986 13012 //================================================== 11987 13013 // EASY EXAMPLES FOR WEYL ALGEBRA … … 12217 13243 12218 13244 /* recent bufgixes (2) Jan 2018; exs from Viktor and Johannes Hoffmann 12219 // Original bug: found only (x+d)^2*x as fa ktorization13245 // Original bug: found only (x+d)^2*x as factorization 12220 13246 LIB "nctools.lib"; 12221 13247 ring r = 0,(x,d),dp; … … 12225 13251 12226 13252 //====================================================================== 12227 // Hard examples not yet c alculatable in feasible amount of time13253 // Hard examples not yet computable in feasible amount of time 12228 13254 //====================================================================== 12229 13255
Note: See TracChangeset
for help on using the changeset viewer.