Changeset c52356d in git
- Timestamp:
- Dec 24, 2000, 4:39:11 PM (22 years ago)
- Branches:
- (u'spielwiese', '0d6b7fcd9813a1ca1ed4220cfa2b104b97a0a003')
- Children:
- b42ab696d40033c0d83fd5fb5cb37e463bd823ca
- Parents:
- c2aa978105e99edf0b9fb6ca0fdd579277b7c665
- File:
-
- 1 edited
Legend:
- Unmodified
- Added
- Removed
-
Singular/LIB/gaussman.lib
rc2aa97 rc52356d 1 1 /////////////////////////////////////////////////////////////////////////////// 2 3 version="$Id: gaussman.lib,v 1.19 2000-12-23 17:11:30 greuel Exp $"; 2 version="$Id: gaussman.lib,v 1.20 2000-12-24 15:39:11 mschulze Exp $"; 4 3 category="Singularities"; 4 5 5 info=" 6 6 LIBRARY: gaussman.lib Gauss-Manin Connection of a Singularity … … 144 144 proc monodromy(poly f,list #) 145 145 "USAGE: monodromy(f[,mode]); poly f, int mode[=1] 146 ASSUME: local ordering, f isolated singularity at 0 147 RETURN: if mode=0 : 148 matrix M : exp(-2*pi*i*M) monodromy matrix of f 149 if mode=1 : 150 ideal e : exp(-2*pi*i*e) spectrum of monodromy of f 146 ASSUME: basering has local ordering, f has isolated singularity at 0 147 RETURN: 148 @format 149 if mode=0: 150 matrix M: exp(-2*pi*i*M) is a monodromy matrix of f 151 if mode=1: 152 ideal e: exp(-2*pi*i*e) is the spectrum of the monodromy of f 153 @end format 151 154 SEE ALSO: monodromy.lib, jordan.lib 152 155 KEYWORDS: singularities; Gauss-Manin connection; monodromy; … … 368 371 369 372 proc vfiltration(poly f,list #) 370 "USAGE: vfiltration(f[,mode]); poly f, int mode[default=1] 371 ASSUME: local ordering, f isolated singularity at 0 372 RETURN: list l: 373 @format 374 if mode=0 or mode=1: 375 l[1]: ideal, spectral numbers in increasing order 376 l[2]: intvec 377 l[2][i]: int, multiplicity of spectral number l[1][i] 378 if mode=1 : 379 l[3]: list 380 l[3][i]: module, vector space basis of l[1][i]-th graded 381 part of the V-filtration on H''/H' in terms of l[4] 382 l[4]: ideal, monomial vector space basis of H''/H' 383 l[5]: ideal, standard basis of Jacobian ideal 384 @end format 385 NOTE: H' and H'' denote Brieskorn lattices 373 "USAGE: vfiltration(f[,mode]); poly f, int mode[=1] 374 ASSUME: basering has local ordering, f has isolated singularity at 0 375 RETURN: 376 @format 377 list l: 378 if mode=0 or mode=1: 379 ideal l[1]: spectral numbers in increasing order 380 intvec l[2]: 381 int l[2][i]: multiplicity of spectral number l[1][i] 382 if mode=1: 383 list l[3]: 384 module l[3][i]: vector space basis of l[1][i]-th graded part 385 of the V-filtration on H''/H' in terms of l[4] 386 ideal l[4]: monomial vector space basis of H''/H' 387 ideal l[5]: standard basis of the Jacobian ideal 388 @end format 389 NOTE: H' and H'' denote the Brieskorn lattices 386 390 SEE ALSO: spectrum.lib 387 391 KEYWORDS: singularities; Gauss-Manin connection; spectrum; … … 745 749 746 750 proc vfiltjacalg(list l) 747 "USAGE: vfiltjacalg(vfiltration(f)); 748 ASSUME: local ordering, f isolated singularity at 0 749 RETURN: list l: 750 @format 751 l[1]: ideal, spectral numbers of the V-filtration on the 752 Jacobian algebra in increasing order 753 l[2]: intvec 754 l[2][i]: int, multiplicity of spectral number l[1][i] 755 l[3]: list 756 l[3][i]: module, vector space basis of l[1][i]-th graded part 757 of the V-filtration on the Jacobian algebra in terms 758 of l[4] 759 l[4]: ideal, monomial vector space basis of the Jacobian algebra 760 l[5]: ideal, standard basis of Jacobian ideal 761 @end format 751 "USAGE: vfiltjacalg(vfiltration(f)); poly f 752 ASSUME: basering has local ordering, f has isolated singularity at 0 753 RETURN: 754 @format 755 list l: 756 ideal l[1]: spectral numbers of the V-filtration 757 on the Jacobian algebra in increasing order 758 intvec l[2]: 759 int l[2][i]: multiplicity of spectral number l[1][i] 760 list l[3]: 761 module l[3][i]: vector space basis of the l[1][i]-th graded part 762 of the V-filtration on the Jacobian algebra 763 in terms of l[4] 764 ideal l[4]: monomial vector space basis of the Jacobian algebra 765 ideal l[5]: standard basis of the Jacobian ideal 766 @end format 762 767 EXAMPLE: example vfiltjacalg; shows an example 763 768 " … … 905 910 proc gamma(list l) 906 911 "USAGE: gamma(vfiltration(f,0)); poly f 907 ASSUME: local ordering, fisolated singularity at 0908 RETURN: number g 912 ASSUME: basering has local ordering, f has isolated singularity at 0 913 RETURN: number g: Hertling's gamma invariant 909 914 EXAMPLE: example gamma; shows an example 910 915 " … … 935 940 proc gamma4(list l) 936 941 "USAGE: gamma4(vfiltration(f,0)); poly f 937 ASSUME: local ordering, fisolated singularity at 0938 RETURN: number g4 942 ASSUME: basering has local ordering, f has isolated singularity at 0 943 RETURN: number g4: Hertling's gamma4 invariant 939 944 EXAMPLE: example gamma4; shows an example 940 945 "
Note: See TracChangeset
for help on using the changeset viewer.