Changeset c57af60 in git
- Timestamp:
- Nov 14, 2022, 11:56:50 AM (3 months ago)
- Branches:
- (u'spielwiese', 'ad2543eab51733612ba7d118afc77edca719600e')
- Children:
- 32c48290ade9c8b3bf376a8ed769638bcc54abdf
- Parents:
- 6cf934536bdf5e13d6b4393257098584b66634f1
- Location:
- kernel
- Files:
-
- 13 edited
Legend:
- Unmodified
- Added
- Removed
-
kernel/GBEngine/kstd1.cc
r6cf934 rc57af60 3553 3553 #endif 3554 3554 3555 // redtailBBa against T for inhomogen ous input3555 // redtailBBa against T for inhomogeneous input 3556 3556 if (!TEST_OPT_OLDSTD) 3557 3557 withT = ! strat->homog; -
kernel/GBEngine/kstd2.cc
r6cf934 rc57af60 2964 2964 for(int i = 0;i<strat->sbaEnterS;i++) 2965 2965 { 2966 //Update: now the element is at the cor ect place2966 //Update: now the element is at the correct place 2967 2967 //i+1 because on the 0 position is the sigdrop element 2968 2968 enterT(strat->L[strat->Ll-(i)],strat); … … 3550 3550 if(strat->P.sig != NULL) 3551 3551 strat->sbaEnterS = pGetComp(strat->P.sig)-1; 3552 //else we already set it at the beg gining of the loop3552 //else we already set it at the beginning of the loop 3553 3553 #ifdef KDEBUG 3554 3554 memset(&(strat->P), 0, sizeof(strat->P)); … … 3632 3632 k = strat->Ll; 3633 3633 #if 1 3634 // 1 - adds just the unused ones, 0 - adds ever thing3634 // 1 - adds just the unused ones, 0 - adds everything 3635 3635 for(;k>=0 && (strat->L[k].p1 != NULL || strat->L[k].p2 != NULL);k--) 3636 3636 { -
kernel/fglm/fglmzero.cc
r6cf934 rc57af60 1079 1079 // some elements of v are zeroed in data.gaussreduce(). Which 1080 1080 // ones and how this was done is stored in p. 1081 // originalV contain es the unchanged v, which is later inserted1081 // originalV contains the unchanged v, which is later inserted 1082 1082 // into the working list (via data.updateCandidates(). 1083 1083 fglmVector v = l.multiply( candidate.v, candidate.var ); -
kernel/groebner_walk/test.cc
r6cf934 rc57af60 314 314 poly p1=pISet(1); 315 315 316 // create t the polynomial 2*x^3*z^2316 // create the polynomial 2*x^3*z^2 317 317 poly p2=p_ISet(2,R); 318 318 pSetExp(p2,1,3); -
kernel/ideals.h
r6cf934 rc57af60 115 115 116 116 117 // GB algorithm for syz computa ions:117 // GB algorithm for syz computations: 118 118 enum GbVariant 119 119 { -
kernel/linear_algebra/Minor.h
r6cf934 rc57af60 59 59 * the number of ints (i.e. 32-bit-numbers) we need to encode the set of 60 60 * rows; 61 * If the hig est row index is 70, we need 3 blocks of 32 bits to also61 * If the highest row index is 70, we need 3 blocks of 32 bits to also 62 62 * encode the 70th bit. 63 63 */ … … 67 67 * the number of ints (i.e. 32-bit-numbers) we need to encode the set of 68 68 * columns; 69 * If the hig est column index is 70, we need 3 blocks of 32 bits to also69 * If the highest column index is 70, we need 3 blocks of 32 bits to also 70 70 * encode the 70th bit. 71 71 */ -
kernel/linear_algebra/MinorProcessor.cc
r6cf934 rc57af60 616 616 rowPermutation[r] = j; 617 617 /* Now we know that tempMatrix[rowPermutation[r] * k + r] is not zero. 618 But careful l; we have to negate the sign, as there is always an odd618 But careful; we have to negate the sign, as there is always an odd 619 619 number of row transpositions to swap two given rows of a matrix. */ 620 620 sign = -sign; … … 1471 1471 rowPermutation[r] = j; 1472 1472 /* Now we know that tempMatrix[rowPermutation[r] * k + r] is not zero. 1473 But careful l; we have to negate the sign, as there is always an odd1473 But careful; we have to negate the sign, as there is always an odd 1474 1474 number of row transpositions to swap two given rows of a matrix. */ 1475 1475 sign = -sign; -
kernel/linear_algebra/MinorProcessor.h
r6cf934 rc57af60 111 111 * \c k columns inside a pre-defined submatrix of a pre-defined matrix.<br> 112 112 * The method will set \c _rowKey and \c columnKey to represent the 113 * next poss bile subsets of \c k rows and columns inside the submatrix113 * next possible subsets of \c k rows and columns inside the submatrix 114 114 * determined by \c _globalRowKey and \c _globalColumnKey.<br> 115 115 * When first called, this method will just shift \c _rowKey and … … 129 129 * the underlying matrix; 130 130 * \c _container will be used to fix a submatrix (e.g. 40 x 50) of a 131 * larger matrix (e.g. 70 x 100). This is useful lwhen we would like to131 * larger matrix (e.g. 70 x 100). This is useful when we would like to 132 132 * compute all minors of a given size (e.g. 4 x 4) inside such a 133 133 * pre-defined submatrix. … … 323 323 * characteristic is non-zero, all results will be computed modulo this 324 324 * characteristic. 325 * @param k the number of rows and columns in the minor to be com uted325 * @param k the number of rows and columns in the minor to be computed 326 326 * @param mk the representation of rows and columns of the minor to be 327 * com uted327 * computed 328 328 * @param multipleMinors decides whether we compute just one or all minors 329 329 * of a specified size … … 355 355 * characteristic is non-zero, all results will be computed modulo this 356 356 * characteristic. 357 * @param k the number of rows and columns in the minor to be com uted357 * @param k the number of rows and columns in the minor to be computed 358 358 * @param mk the representation of rows and columns of the minor to be 359 * com uted359 * computed 360 360 * @param characteristic 0 or the characteristic of the underlying 361 361 * coefficient ring/field … … 383 383 * given characteristic is non-zero, all results will be computed modulo 384 384 * this characteristic. 385 * @param k the number of rows and columns in the minor to be com uted385 * @param k the number of rows and columns in the minor to be computed 386 386 * @param mk the representation of rows and columns of the minor to be 387 387 * computed … … 582 582 * If an ideal is given, it is assumed to be a standard basis. In this case, 583 583 * all results will be reduced w.r.t. to this basis. 584 * @param k the number of rows and columns in the minor to be com uted584 * @param k the number of rows and columns in the minor to be computed 585 585 * @param mk the representation of rows and columns of the minor to be 586 * com uted586 * computed 587 587 * @param multipleMinors decides whether we compute just one or all minors 588 588 * of a specified size … … 608 608 * If an ideal is given, it is assumed to be a standard basis. In this case, 609 609 * all results will be reduced w.r.t. to this basis. 610 * @param k the number of rows and columns in the minor to be com uted610 * @param k the number of rows and columns in the minor to be computed 611 611 * @param mk the representation of rows and columns of the minor to be 612 * com uted612 * computed 613 613 * @param iSB NULL or a standard basis 614 614 * @return an instance of MinorValue representing the value of the … … 627 627 * If an ideal is given, it is assumed to be a standard basis. In this case, 628 628 * all results will be reduced w.r.t. to this basis. 629 * @param k the number of rows and columns in the minor to be com uted629 * @param k the number of rows and columns in the minor to be computed 630 630 * @param mk the representation of rows and columns of the minor to be 631 * com uted631 * computed 632 632 * @param iSB NULL or a standard basis 633 633 * @return an instance of MinorValue representing the value of the -
kernel/linear_algebra/linearAlgebra.cc
r6cf934 rc57af60 39 39 * numbers (, see numbers.h): nSize(n) provides a measure for the 40 40 * complexity of n. Thus, less complex pivot elements will be 41 * prefer ed, and get therefore a smaller pivot score. Consequently,41 * preferred, and get therefore a smaller pivot score. Consequently, 42 42 * we simply return the value of nSize. 43 43 * An exception to this rule are the ground fields R, long R, and -
kernel/linear_algebra/linearAlgebra.h
r6cf934 rc57af60 13 13 * the entries of the matrices are 'numbers' representing elements of K (and 14 14 * NOT 'polys' in K[x_1, x_2, ..., x_n]). 15 * This restriction may become obs elete in the future.15 * This restriction may become obsolete in the future. 16 16 * 17 17 * @author Frank Seelisch -
kernel/linear_algebra/linear_algebra.dox
r6cf934 rc57af60 1 /*! \page kernel_linear_algebra_page Lin ar algebra related algorithms1 /*! \page kernel_linear_algebra_page Linear algebra related algorithms 2 2 3 3 This sub-package of kernel (\ref kernel_page) contains -
kernel/linear_algebra/minpoly.h
r6cf934 rc57af60 22 22 * Every time a new row VA^i is inserted, it is reduced via Gauss' Algorithm, * 23 23 * using right hand sides. If VA^i is reduced to zero, then the vectors are * 24 * linearly dependen d, and the dependency can be read of at the right hand sides. *24 * linearly dependent, and the dependency can be read of at the right hand sides. * 25 25 * * 26 26 * Example: Compute the minimal polynomial of A = [[0,1],[1,1]] with V = [1,0] * … … 81 81 82 82 // reset the matrix, so that we can use it to find another linear dependence 83 // Note: there is no need to reinit alize the matrix and vectors!83 // Note: there is no need to reinitialize the matrix and vectors! 84 84 void resetMatrix(); 85 85 -
kernel/oswrapper/vspace.h
r6cf934 rc57af60 1447 1447 #endif 1448 1448 #ifdef HAVE_CPP_THREADS 1449 // We only need to define the copy construct ur for the1449 // We only need to define the copy constructor for the 1450 1450 // atomic version, as the std::atomic_flag constructor 1451 1451 // is deleted.
Note: See TracChangeset
for help on using the changeset viewer.