Changeset ca9c14 in git
- Timestamp:
- Aug 24, 2013, 6:39:15 PM (10 years ago)
- Branches:
- (u'jengelh-datetime', 'ceac47cbc86fe4a15902392bdbb9bd2ae0ea02c6')(u'spielwiese', 'f875bbaccd0831e36aaed09ff6adeb3eb45aeb94')
- Children:
- a57b655308776d26d2a30d610451d0b7955cf233
- Parents:
- d55b3c24490789ff86cd0aeefd67f1eda2fd8ccf
- git-author:
- Janko Boehm <boehm@mathematik.uni-kl.de>2013-08-24 18:39:15+02:00
- git-committer:
- Janko Boehm <boehm@mathematik.uni-kl.de>2013-09-03 19:36:12+02:00
- File:
-
- 1 edited
Legend:
- Unmodified
- Added
- Removed
-
Singular/LIB/ellipticCovers.lib
rd55b3c rca9c14 11 11 OVERVIEW: 12 12 13 We implement a formula for computing the number of covers of elliptic curves 14 which has beed proved by proving mirror symmetry 15 for arbitrary genus by tropical methods in [BBM]. A Feynman graph of genus 16 g, which is defined as a trivalent genus g connected graph (with 2g-2 vertices 17 and 3g-3 edges). The branch type a=(a_1,...,a_(3g-3)) of a stable map is the 18 multiplicity of the the edge i over a fixed base point. 19 20 Given a Feynman graph and a branch type a, we compute the number 21 N_(Gamma,a) of stable maps from a genus g curve of topological type Gamma 22 and branch type a to the elliptic curve by computing a path integral 23 over a rational function (as a residue). 24 25 The sum of N_(Gamma,a) over all branch types a of sum d gives the 26 Gromov-Witten invariant N_(Gamma,d) of degree d stable maps from a genus g curve 27 of topological type Gamma to the elliptic curve. 28 29 The sum of N_(Gamma,d) over all such graphs gives the usual Gromov-Witten invariant N_(g,d) 30 of degree d stable maps from a genus g curve to the elliptic curve. 31 32 References: 33 34 [BBM] J. Boehm, A. Buchholz, H. Markwig: Tropical mirror symmetry for elliptic curves. 35 13 36 KEYWORDS: 14 37 38 tropical geometry; mirror symmetry; tropical mirror symmetry; Gromov-Witten invariants; elliptic curves; propagator; Feynman graph; path integral 39 15 40 TYPES: 16 41 42 graph 43 17 44 PROCEDURES: 45 46 makeGraph(list, list) graph from lists of vertices and edges; 47 propagator(list, int) propagator factor of degree d in the quotient of two variables 48 propagator(graph, list) propagator for fixed graph and branch type 49 computeConstant(number, number) constant coefficient in the Laurent series expansion of a rational function in a given variable 50 evalutateIntegral(number, list) path integral for a given propagator and ordered sequence of variables 51 gromovWitten(number) sum of path integrals for a given propagator over all orderings of the variables 52 gromovWitten(graph, int) list of Gromov Witten invariants for a given graph and all branch types 53 54 partitions(int, int) partitions of an integer in a fixed number of summands 55 permute(list) all permutations of a list 56 sum(list) sum of the elements of a list 57 max(int, int) compute the maximum 18 58 19 59 "; … … 217 257 } 218 258 if (typeof(P)=="graph"){ 259 if (size(#)==1){ 219 260 int d =#[1]; 261 list pa = partitions(size(P.edges),d); 262 return(gromovWitten(P,list(#[1],1,size(pa)))); 263 } else { 264 int d =#[1]; 265 int st = #[2]; 266 int en = #[3]; 220 267 number s =0; 221 268 number p; … … 224 271 list pa = partitions(size(P.edges),d); 225 272 int ti; 273 int ct=1; 274 print(size(pa)); 226 275 for (int j=1; j<=size(pa); j++) { 276 if ((j>=st)&(j<=en)){ 227 277 ti=timer; 228 278 //pararg[j]=list(propagator(G,pa[j])); 229 279 re[j]=gromovWitten(propagator(G,pa[j])); 230 280 ti=timer-ti; 231 print(string(j)+" / "+string(size(pa))+" "+string(pa[j])+" "+string(re[j])+" "+string(ti)); 281 print(string(j)+" / "+string(size(pa))+" "+string(pa[j])+" "+string(re[j])+" "+string(sum(re))+" "+string(ti)); 282 } else {re[j]=0;} 232 283 } 233 284 //list re = parallelWaitAll("gromovWitten", pararg, list(list(list(2)))); 234 285 return(re); 286 } 235 287 } 236 288 }
Note: See TracChangeset
for help on using the changeset viewer.