Changeset cbfc2f in git
- Timestamp:
- Sep 6, 2013, 2:24:00 PM (10 years ago)
- Branches:
- (u'jengelh-datetime', 'ceac47cbc86fe4a15902392bdbb9bd2ae0ea02c6')(u'spielwiese', 'f875bbaccd0831e36aaed09ff6adeb3eb45aeb94')
- Children:
- 4401c687951c96cf1094bab8118bc46ab9e3e5fa
- Parents:
- 1f4135239e4f72e97d56ca7e4f953e9604cc12185831a559c7405b616a323b26dcd801d0c9b57674
- Files:
-
- 5 added
- 3 deleted
- 21 edited
Legend:
- Unmodified
- Added
- Removed
-
Singular/LIB/ncfactor.lib
r1f41352 rcbfc2f 4 4 info=" 5 5 LIBRARY: ncfactor.lib Tools for factorization in some noncommutative algebras 6 AUTHORS: Albert Heinle, a lbert.heinle@rwth-aachen.de6 AUTHORS: Albert Heinle, aheinle@uwaterloo.ca 7 7 @* Viktor Levandovskyy, levandov@math.rwth-aachen.de 8 8 9 9 OVERVIEW: In this library, new methods for factorization on polynomials 10 @*are implemented for two algebras, both generated by two generators (Weyl and11 @*shift algebras) over a field K. Recall, that the first Weyl algebra over K12 @*is generated by x,d obeying the relation d*x=x*d+1.10 are implemented for two algebras, both generated by two generators (Weyl and 11 shift algebras) over a field K. Recall, that the first Weyl algebra over K 12 is generated by x,d obeying the relation d*x=x*d+1. 13 13 @* The first shift algebra over K is generated by x,s obeying the relation s*x=x*s+s. 14 14 @* More detailled description of the algorithms can be found at … … 35 35 LIB "crypto.lib"; //for introot 36 36 LIB "matrix.lib"; //for submatrix 37 LIB "solve.lib"; //right now not needed 37 38 LIB "poly.lib"; //for content 38 39 … … 1163 1164 dbprint(p,dbprintWhitespace +" Done"); 1164 1165 } 1166 if (homogwithorder(h,intvec(-1,1))) 1167 { 1168 dbprint(p, dbprintWhitespace + " Polynomial was homogeneous, therefore we have 1169 already a complete factorization and do not have to go through the factors recursively."); 1170 return(result); 1171 } 1172 dbprint(p,dbprintWhitespace + "We have the following intermediate list of inhomogeneous 1173 factorizations:"); 1174 dbprint(p,result); 1165 1175 dbprint(p,dbprintWhitespace +" recursively check factors for irreducibility"); 1166 1176 list recursivetemp; … … 1202 1212 result = list(list(1,h)); 1203 1213 }//only the trivial factorization could be found 1214 list resultWithInterchanges; 1215 dbprint(p,dbprintWhitespace+ "And the result without interchanges with homogeneous factors is:"); 1216 dbprint(p,result); 1217 for (i = 1; i <= size(result) ; i++) 1218 {//applying the interchanges to result 1219 resultWithInterchanges = resultWithInterchanges + 1220 checkForHomogInhomogInterchangability(result[i],2,size(result[i])); 1221 }//applying the interchanges to result 1222 dbprint(p,dbprintWhitespace + "With interchanges, the result is:"); 1223 dbprint(p,resultWithInterchanges); 1204 1224 //now, refine the possible redundant list 1205 return( delete_dublicates_noteval(result ) );1225 return( delete_dublicates_noteval(resultWithInterchanges) ); 1206 1226 }//proc facFirstWeyl 1207 1227 example … … 1218 1238 /////BRANDNEW!!!!//////////////////// 1219 1239 ////////////////////////////////////////////////// 1240 1241 static proc checkForHomogInhomogInterchangability(list factors, posLeft, posRight) 1242 " 1243 INPUT: A list consisting of factors of a certain polynomial in the first Weyl 1244 algebra, factors, and a position from the left and the right, where the last swap was done. 1245 OUTPUT: A list containing lists consisting of factors of a certain polynomial in the first Weyl 1246 algebra. 1247 The purpose of this function is to check whether we can interchange certain inhomogeneous factors 1248 with homogeneous ones. If it is possible, this function returns a list of lists 1249 of possible interchanges. 1250 1251 The idea came because of an example, where we need an extra swap in the end, otherwise we would 1252 not capture all factorizations. The example was 1253 h = x4d7+11x3d6+x2d7+x2d6+x3d4+29x2d5+xd6+8xd5+d6+5x2d3+14xd4+13d4+5xd2+d3+d; 1254 1255 ASSUMPTIONS: 1256 1257 - All factors are irreducible 1258 " 1259 {//checkForHomogInhomogInterchangability 1260 int p = printlevel-voice+2; 1261 string dbprintWhitespace = ""; 1262 int i; int j; int k; 1263 for (i = 1; i<=voice;i++) 1264 {dbprintWhitespace = dbprintWhitespace + " ";} 1265 if (size(factors) <= 2 || posLeft >= posRight - 1) 1266 {//easiest case: There is nothing to swap 1267 return (list(factors)); 1268 }//easiest case: There is nothing to swap 1269 list result = list(factors); 1270 list tempResultEntries; 1271 list tempSwaps; 1272 list tempSwapsTempEntry; 1273 list attemptToSwap; 1274 intvec ivm11 = intvec(-1,1); 1275 dbprint(p, dbprintWhitespace+"We try to swap elements in the following list:"); 1276 dbprint(p, factors); 1277 for (i = posLeft; i < posRight; i++) 1278 {//checking within the window posLeft <--> posRight, if there are interchanges possible 1279 if (homogwithorder(factors[i],ivm11) && !homogwithorder(factors[i+1],ivm11)) 1280 {//position i is homogeneous, position i+1 is not ==> trying to swap 1281 attemptToSwap = extractHomogeneousDivisorsRight(factors[i]*factors[i+1]); 1282 if (size(attemptToSwap[1])>1) 1283 {//Bingo, we were able to swap this one element 1284 dbprint(p,dbprintWhitespace+"We can swap entry "+string(i)+" and "+ string(i+1)); 1285 dbprint(p,dbprintWhitespace+"The elements look like the following after the swap:"); 1286 dbprint(p,attemptToSwap); 1287 tempSwapsTempEntry = list(); 1288 for (j = size(factors); j >=1; j--) 1289 {//creating a new entry for the resulting list, replacing the swap in factors 1290 if (j==i+1) 1291 { 1292 for (k = size(attemptToSwap[1]); k >=1 ; k--) 1293 { 1294 tempSwapsTempEntry = insert(tempSwapsTempEntry, attemptToSwap[1][k]); 1295 } 1296 j--; //Because we changed entry i+1 and i 1297 } 1298 else 1299 { 1300 tempSwapsTempEntry = insert(tempSwapsTempEntry,factors[j]); 1301 } 1302 }//creating a new entry for the resulting list, replacing the swap in factors 1303 tempSwaps = insert(tempSwaps,list(list(i+1,posRight),tempSwapsTempEntry)); 1304 }//Bingo, we were able to swap this one element 1305 }//position i is homogeneous, position i+1 is not ==> trying to swap 1306 else 1307 { 1308 if(!homogwithorder(factors[i],ivm11) && homogwithorder(factors[i+1],ivm11)) 1309 {//position i+1 is homogeneous, position i is not ==> trying to swap 1310 attemptToSwap = extractHomogeneousDivisorsLeft(factors[i]*factors[i+1]); 1311 if (size(attemptToSwap[1])>1) 1312 {//Bingo, we were able to swap this one element 1313 dbprint(p,dbprintWhitespace+"We can swap entry "+string(i)+" and "+ string(i+1)); 1314 dbprint(p,dbprintWhitespace+"The elements look like the following after the swap:"); 1315 dbprint(p,attemptToSwap); 1316 tempSwapsTempEntry = list(); 1317 for (j = size(factors); j >=1; j--) 1318 {//creating a new entry for the resulting list, replacing the swap in factors 1319 if (j==i+1) 1320 { 1321 for (k = size(attemptToSwap[1]); k >=1 ; k--) 1322 { 1323 tempSwapsTempEntry = insert(tempSwapsTempEntry, attemptToSwap[1][k]); 1324 } 1325 j--; //Because we changed entry i+1 and i 1326 } 1327 else 1328 { 1329 tempSwapsTempEntry = insert(tempSwapsTempEntry,factors[j]); 1330 } 1331 }//creating a new entry for the resulting list, replacing the swap in factors 1332 tempSwaps = insert(tempSwaps,list(list(posLeft,i),tempSwapsTempEntry)); 1333 }//Bingo, we were able to swap this one element 1334 }//position i+1 is homogeneous, position i is not ==> trying to swap 1335 } 1336 }//checking within the window posLeft <--> posRight, if there are interchanges possible 1337 //Now we will recursively call the function for all swapped entries. 1338 dbprint(p,dbprintWhitespace+ "Our list of different factorizations is now:"); 1339 dbprint(p,tempSwaps); 1340 for (i = 1; i<=size(tempSwaps);i++) 1341 {//recursive call to all formerly attempted swaps. 1342 tempResultEntries=checkForHomogInhomogInterchangability(tempSwaps[i][2], 1343 tempSwaps[i][1][1],tempSwaps[i][1][2]); 1344 result = result + tempResultEntries; 1345 }//recursive call to all formerly attempted swaps. 1346 result = delete_dublicates_noteval(result); 1347 return(result); 1348 }//checkForHomogInhomogInterchangability 1220 1349 1221 1350 static proc sfacwa(poly h) … … 1269 1398 }//Going through all different kinds of factorizations where we extracted homogeneous factors 1270 1399 dbprint(p,dbprintWhitespace +" Done"); 1400 dbprint(p,dbprintWhitespace + "The set is:"); 1401 dbprint(p,inhomogeneousFactorsToFactorize); 1271 1402 dbprint(p,dbprintWhitespace+ "Factorizing the different occuring inhomogeneous factors"); 1272 1403 for (i = 1; i<= size(inhomogeneousFactorsToFactorize); i++) … … 1313 1444 posInhomogPoly-1); 1314 1445 }//Inserting factorizations 1446 dbprint(p,dbprintWhitespace + "Added a factorization to result, namely:"); 1447 dbprint(p, result[1]); 1315 1448 } 1316 1449 }//going through all by now calculated factorizations … … 1639 1772 option(redSB); 1640 1773 dbprint(p,dbprintWhitespace+" Calculating reduced Groebner Basis of that system."); 1641 solutionSystemforqs = s td(solutionSystemforqs);1774 solutionSystemforqs = slimgb(solutionSystemforqs); 1642 1775 dbprint(p,dbprintWhitespace+" Done!, the solution for the system is:"); 1643 1776 dbprint(p,dbprintWhitespace+string(solutionSystemforqs)); 1644 if(vdim(s td(solutionSystemforqs+theta))==0)1777 if(vdim(slimgb(solutionSystemforqs+theta))==0) 1645 1778 {//No solution in this case. Return the empty list 1646 1779 dbprint(p,dbprintWhitespace+"The Groebner Basis of the solution system was <1>."); … … 1648 1781 return(list()); 1649 1782 }//No solution in this case. Return the empty list 1650 if(vdim(s td(solutionSystemforqs+theta))==-1)1783 if(vdim(slimgb(solutionSystemforqs+theta))==-1) 1651 1784 {//My conjecture is that this would never happen 1652 1785 //ERROR("This is an counterexample to your conjecture. We have infinitely many solutions"); … … 1659 1792 else 1660 1793 {//We have finitely many solutions 1661 if(vdim(s td(solutionSystemforqs+theta))==1)1794 if(vdim(slimgb(solutionSystemforqs+theta))==1) 1662 1795 {//exactly one solution 1663 1796 for (i = 2; i<= size(qs)-1;i++) … … 1764 1897 string dbprintWhitespace = ""; 1765 1898 int i; int j; int k; int l; 1899 list result; 1766 1900 for (i = 1; i<=voice;i++) 1767 1901 {dbprintWhitespace = dbprintWhitespace + " ";} … … 1769 1903 {//given polynomial was homogeneous already 1770 1904 dbprint(p,dbprintWhitespace+"Polynomial was homogeneous. Just returning all factorizations."); 1771 return(homogfacFirstWeyl_all(h)); 1905 result = homogfacFirstWeyl_all(h); 1906 for (i = 1; i<=size(result);i++) 1907 {//removing the first entry (coefficient) from the list result 1908 result[i] = delete(result[i],1); 1909 }//removing the first entry (coefficient) from the list result 1910 return(result); 1772 1911 }//given polynomial was homogeneous already 1773 list result;1774 1912 dbprint(p,dbprintWhitespace+"Calculating list with all homogeneous left divisors extracted"); 1775 1913 list leftDivisionPossibilities = extractHomogeneousDivisorsLeft(h); … … 1895 2033 {//given polynomial was homogeneous already 1896 2034 dbprint(p,dbprintWhitespace+"Polynomial was homogeneous. Just returning all factorizations."); 1897 return(homogfacFirstWeyl_all(h)); 2035 result = homogfacFirstWeyl_all(h); 2036 for (i = 1; i<=size(result);i++) 2037 {//removing the first entry (coefficient) from the list result 2038 result[i] = delete(result[i],1); 2039 }//removing the first entry (coefficient) from the list result 2040 return(result); 1898 2041 }//given polynomial was homogeneous already 1899 2042 list hlist = homogDistribution(h); … … 1999 2142 {//given polynomial was homogeneous already 2000 2143 dbprint(p,dbprintWhitespace+"Polynomial was homogeneous. Just returning all factorizations."); 2001 return(homogfacFirstWeyl_all(h)); 2144 result = homogfacFirstWeyl_all(h); 2145 for (i = 1; i<=size(result);i++) 2146 {//removing the first entry (coefficient) from the list result 2147 result[i] = delete(result[i],1); 2148 }//removing the first entry (coefficient) from the list result 2149 return(result); 2002 2150 }//given polynomial was homogeneous already 2003 2151 list hlist = homogDistribution(h); … … 2079 2227 } 2080 2228 return(result); 2081 }//extractHomogeneousDivisors Left2229 }//extractHomogeneousDivisorsRight 2082 2230 2083 2231 static proc fromZeroHomogToThetaPoly(poly h) … … 2235 2383 //First, we are going to deal with our most hated guys: The Coefficients. 2236 2384 // 2237 list coeffTuplesMax = getAllCoeffTuplesComb(factorizeInt( int(f1[1][1])));2385 list coeffTuplesMax = getAllCoeffTuplesComb(factorizeInt(number(f1[1][1]))); 2238 2386 //We can assume without loss of generality, that p_max has a 2239 2387 //nonnegative leading coefficient … … 2246 2394 } 2247 2395 }//Deleting all tuples with negative entries for p_max 2248 list coeffTuplesMin = getAllCoeffTuplesComb(factorizeInt( int(f2[1][1])));2396 list coeffTuplesMin = getAllCoeffTuplesComb(factorizeInt(number(f2[1][1]))); 2249 2397 2250 2398 //Now, we will be actally dealing with the Combinations. … … 3809 3957 if (size(list_not_azero)!=0) 3810 3958 {//Compute all possibilities to permute the x's resp. the y's in the list 3811 if (list_not_azero[1] == x)3959 if (list_not_azero[1] == var(1)) 3812 3960 {//h had a negative weighted degree 3813 3961 shift_sign = 1; 3814 shiftvar = x;3962 shiftvar = var(1); 3815 3963 }//h had a negative weighted degree 3816 3964 else 3817 3965 {//h had a positive weighted degree 3818 3966 shift_sign = -1; 3819 shiftvar = y;3967 shiftvar = var(2); 3820 3968 }//h had a positive weighted degree 3821 3969 result = permpp(list_azero + list_not_azero); … … 3890 4038 {//the jth entry is theta and can be written as x*y 3891 4039 thetapos = j; 3892 result[i]= insert(result[i], x,j-1);4040 result[i]= insert(result[i],var(1),j-1); 3893 4041 j++; 3894 result[i][j] = y;4042 result[i][j] = var(2); 3895 4043 found_theta = 1; 3896 4044 break; … … 3899 4047 { 3900 4048 thetapos = j; 3901 result[i] = insert(result[i], y,j-1);4049 result[i] = insert(result[i],var(2),j-1); 3902 4050 j++; 3903 result[i][j] = x;4051 result[i][j] = var(1); 3904 4052 found_theta = 1; 3905 4053 break; … … 3915 4063 rparts = list(rightpart); 3916 4064 //first deal with the left part 3917 if (leftpart[thetapos] == x)4065 if (leftpart[thetapos] == var(1)) 3918 4066 { 3919 4067 shift_sign = 1; 3920 shiftvar = x;4068 shiftvar = var(1); 3921 4069 } 3922 4070 else 3923 4071 { 3924 4072 shift_sign = -1; 3925 shiftvar = y;4073 shiftvar = var(2); 3926 4074 } 3927 4075 for (j = size(leftpart); j>1;j--) … … 3949 4097 }//drip x resp. y 3950 4098 //and now deal with the right part 3951 if (rightpart[1] == x)4099 if (rightpart[1] == var(1)) 3952 4100 { 3953 4101 shift_sign = 1; 3954 shiftvar = x;4102 shiftvar = var(1); 3955 4103 } 3956 4104 else 3957 4105 { 3958 4106 shift_sign = -1; 3959 shiftvar = y;4107 shiftvar = var(2); 3960 4108 } 3961 4109 for (j = 1 ; j < size(rightpart); j++) … … 4340 4488 def R = nc_algebra(1,1); 4341 4489 setring R; 4342 LIB " ncfactor.lib";4490 LIB "/Users/albertheinle/Studium/forschung/ncfactor/versionen/ncfactor.lib"; 4343 4491 poly t = x; poly D =d; 4344 4492 poly p = 2*t^2*D^8-6*t*D^8+2*t^2*D^7+8*t*D^7+12*D^7-2*t^4*D^6+6*t^3*D^6+12*t*D^6-20*D^6 -
Singular/singular-libs
r5831a55 rcbfc2f 45 45 locnormal.lib modnormal.lib \ 46 46 JMBTest.lib JMSConst.lib multigrading.lib parallel.lib realizationMatroids.lib ringgb.lib \ 47 schreyer.lib symodstd.lib derham.lib polybori.lib 47 schreyer.lib symodstd.lib derham.lib polybori.lib ellipticcovers.lib 48 48 49 49 PLIBS = bfun.lib central.lib dmod.lib dmodapp.lib dmodvar.lib fpadim.lib \ -
Tst/Long/ncfactor_counterExOld_l.res.gz.uu
r1f41352 rcbfc2f 1 begin 644 ncfactor_counterExOld_l.res.gz 2 M'XL("#,APE```VYC9F%C=&]R7V-O=6YT97)%>$]L9%]L+G)E<P"M6%M3XS88 3 M?<^OT`,/W04[NO@2NYV="9!"NL`R&]@^=#N,$HN@0;:RLD-)'_K;*SNVN<59 4 M*]B3R_B3?,YWTY$2`#9<D_'%R?79\.NFL1=7OP>&X$C&BV7&%!B*.9LJ"B:K 5 M-&,QN)4*7$JQ2F3,J2BGT8S+)*T>U^\'IE)M`L1"EMO[*6/S!7_K@>DJ!'_: 6 MX)C-[IDZ`">V=6Z#$\663.1WX/*6:]?TR*D-)K,[R1(6TR0IGO^NWW\L!<`0 7 MX=[OA^"<9G=Z-./W(-+!72>\<#6C+#L`QY;G>RX!GRE/M570/`%)Y<KW7K\/ 8 M/GX$0M*(1:`_7"P$GZU#[T]X,E\*JOI%Q/VS\6$_2S-;\"GX!3G.`!_D'E@0 9 M63#XT.,)S\"G3^!Z,BK*$5(Q94I[QA/!ZM'3+Y.KB^'Y*!Q_&9[:0LZHJ,>6 10 M"8T9L&AX3-4_/`%/4P""]L"&H!SXK"-@`GPK"[(>#,'5DNF\Z-A\@+R0D)!X 11 MX/+X*L\3^A4H*;/P,5E:R(6.C5R;_(?Z7T=GH^%D=#,F`P]P_5$[$]&,%6&< 12 M2X`]<"$?BGP#C$/HA\0!1Z.K>G+5&B'1X+4UX[/[O(%"5)OR=.L<WO!Y(A4+ 13 MP=&W"1@?@[UQM&=8B61V2V>95$4Y=GA^H?N]*N7`K4KI6`1^,$12VE0BN0C" 14 M$LFWD#'20O$X8K/*+9]4;I$=W*+3-,]0!88"E(/I7G5UF*9@F>*TCI(X09!C 15 M02M_N<;YHDDDX\HOST-UD-`8BPG>$1)/Y#+K)L!4B@=60?F$E%#:,<\42JN: 16 MXH\5EN<.2BQD(6.LF5HM,EEEBT"O[`?/PKXIUJUB;#ZML#`D3[UEG*[I[3+I 17 M!FFAV//<OQ,MBF5$%XL*+`@&97MYN_3$DT@X`P?6<H.-U_7\/JI['F/B:B@8 18 MY!T!R2X1UML9+ONA>!GWEDPR)44W37\G8RGDO)MU'3%]NHF[6=CS.'U>1Q0X 19 M[Y!4P1,JYMUD[,>=KN12\&X:7V]H#U1UD[)_F9(IZTA8\_V19_RA&S0=I13+ 20 MK)L%D,R>BOG.].M##:_.`)@06"]P;-P7B3XA29'6?CE>[9<YV%R?P14530>* 21 MO]#?8?ZKH/K6%RKN<7W_B*/]M8T\MUF/I=79:'5?/(]S<X79%=?^9BY-1'8F 22 MPB9,15!.UUS-^7-WI3*H5$'D=4G45"2_#4GM9:O4X2TQ#;JGV\1%"K+@'61& 23 MH6DN!+LF:VB-=6BHE6)LIMLWH5NSM=(,$[;&-+82#8MT4+3U:D:ME,.,<&OA 24 M6LE'`Y_Q<D.M-,2$;4MD[:2D@<M8\5$[*3&BV](F[;0$OW_!E9MT.SDQX6O> 25 MJ'$[,=E,9K@+E.&U$Q0SQFW+#K?3E89\FFT%N)VDM.?:MA.@XM_"-+N)62S5 26 MZ@:",'SV[V=(',_'T'DS#[V:AP/7=Z`W>#,1OP9T'>)C'S]-S'C,U&LXUPEZ 27 G^*>^N;XW&+R9U^C;ZXF-ON$7OKT%S+WK[1VNF-W[']K<[5P<&``` 1 begin 664 ncfactor_counterExOld_l.res.gz 2 M'XL("+*;*5(``VYC9F%C=&]R7V-O=6YT97)%>$]L9%]L+G)E<P"MEDUK@T`0 3 MAN_^BB'T8!HKV36?#=U#OR`04F@*/9163+1%6$S1+37_OFN,F@979EM/ZLSL 4 M/,ZX^SJKI]OY$@`(@\7\&CHB$38/UYV9L3IX*`-I=,,H%&9W9F178`RBS;NW 5 M$=O8W6R_(A'$=^D#]UUN1\&WG0A/E.N=0^9BP4GZ`8/R?FA#'$8?\`A7T+?, 6 MU/*[EO]9Q8X8^,$[Q-(=;5R/?P3KV#.)1;I5S)A!$H@LC1D?F2<,/K=\!PNY 7 MUB2]](V>^]VW014PS7/S*_F6]V&<B.=@Q\U%E8+T92."1"QO9`28W(+,24JW 8 M[""?&2_D]=*0Z8IKUMK],RV?4^KW<IMS;+M(#];!K\C".CQ97R34!]5B%!"G 9 M3<A%?2V9M0ALJVT*%-VSAG]FT?IOI$:-VD8UM'",896-0=%H`V[2/JZ.Y>QA 10 MTW_`M$J3+-)O&Z;8C7EI!*48];@>OH\9"249.J2F$TU0VE%MA;_C\J-&4!*B 11 MQ5.++T%IB`*F>=H.Y:&D1)/8N"]Q>J+HI^:1PXD)GM5\XG!JXK0@)_FWHSA% 12 MT0(V%4AQDE+/T_X14)RL:-`:*L.)BH*E_4NE.$W1PBFW23%(TFHB)HZ]'[ZS 13 8@?HK,8^&T0$[=L@!&,Z,'P.DEAK,"P`` 28 14 ` 29 15 end -
Tst/Long/ncfactor_counterExOld_l.tst
-
Property
mode
changed from
100755
to100644
r1f41352 rcbfc2f 8 8 setring(r); 9 9 poly L = (1+x^2*d)^4; 10 facFirstWeyl(L); 10 def l=facFirstWeyl(L); 11 testNCfac (l, L); 12 l; 11 13 12 14 tst_status(); -
Property
mode
changed from
-
Tst/Long/ncfactor_lee_l.res.gz.uu
r1f41352 rcbfc2f 1 1 begin 644 ncfactor_lee_l.res.gz 2 M'XL("#,APE```VYC9F%C=&]R7VQE95]L+G)E<P"U5UU3XS84?<^ON`\\='>Q 3 MHP];=MS.S@1((5U@F0UL'[H=1HE%T"!;J6+3I`_][96=V,D&*./@]>1CKG1U 4 M=.Z]1[($\,PS&EZ>WISWOSS7]]W3[4`?CG4RRS-AH*^F8FPXC);S3"1PIPU< 5 M:;5,=2*Y6KOQ3.IT7@VWWT=AYK8)J(,=O_/JC"\_Z)<.C)<1_.["B9@\"',( 6 MIZYSX<*I$;E0A057=])2LSUG+HPF]UJD(N%I6H[_9K^_Y0H(PJ3SZQ%<\.S> 7 M]F;R`6(;W$TJ2ZH9%]DAG#@L8#Z%3US.;:OB10+2BLJW3K<+[]^#TCP6,73[ 8 MLYF2DU7HW9%,I[GBIEM&W#T?'G6S>>8J.8:?L.>%Y+!@X"#LH-Z[CDQE!A\_ 9 MPLUH4)8CXFHLC&4F4R7JWK//H^O+_L4@&G[NG[E*3[BJ^_*4)P(<'IUP\[=, 10 M8>,"&+FABV#=\<E&(!1\71=DU1G!=2YL7FQL`6`641I1!E<GUT6>\,]@M,ZB 11 M19H[V$>>BWV7_HN[7P;G@_YH<#ND(0-I?VHR,<]$&<:%!L+@4C^6^09"(HPC 12 MC\'QX+IVKJ0140M>MV9R\E`(*,)U4Y%NF\-;.4VU$1$<?QW!\`0.AO%!PTJD 13 MDSL^R;0IR[''^)G5>U7*T*]*Z3D4O6N(9&S3&LG'"*V1`@<W1IH9F<1B4M$* 14 M:$6+[D&+C^=%ABHPW,,%F-6J;\-L"I89R>LHJ=?K%5C(*3Y^XWSQ--9)Q8LQ 15 M7`>)&F,))5M"DJG.LW8"G&OU*"JH@-(UE"7&FD+97<W(187%_'"-A1W<&&MB 16 MEK-,5]FBB*WUP!P2-,6Z,T),QQ46072CK<;I&M_E:3M(,R.V<_]&M#C1,9_- 17 M*K!>+US+B^VCB<TFX84>JK<;TGA=3Q_B6O.$4-]"H5ZA"$3WB;!^G9&U'LI/ 18 M8VWI-#-:M2/Z>YUHI:?MK.M8V---TL["GB;S[3KBGO>&+57)E*MI.QG[Z]Y6 19 M,E>R'>';%]HC-^VD[!]A]%RTM+$6[T>9R<=VT&R46N59.PL@G6R*^<;TVT.- 20 MK,X`A%)4+W#26!>I/2%I-:]Y>:SFU1QL:L_@AJN7#A1_X#^CXE90_=L'ES;9 21 MV&CAQ>0#80L:TP]>L/!L6($UG"!<$-M36/;79XO8%I25PVD]?%':7FW'I>UO 22 MV=5</XY#O,.A<.I4_?\S[>*56!8[L:QLMDV[9+WB[/2"%9%@AUBXG0SO=5:Q 23 M0UL@1@MB7D',9@,%,7&\H%.-:9*4V"&M3<_>7I.BMOM.'_QP2>PJX&4NX3Y" 24 ML'!TM5#(2G2T7"@D=GQ2:-$GSZX%7-[\[!4O$8DVRUL$4;1UDXW"GCU[>MX3 25 M/[SC9]DC1,E31[+K:.]<#`=LXYC)1)@=+X)(A[Q.#7LH?.+W(K5=QQ>ID>^H 26 4/0$LR'4.CI;"[?P'AY"J5^81```` 2 M'XL("`_<*%(``VYC9F%C=&]R7VQE95]L+G)E<P"U5$UK@T`0O?LKAM"#(2KN 3 MAYHV9`]M*01"#TVAAU)"FC5!6$S0+37_OK,:/Y#0-"V]K#YGY[VWL^,LGN]G 4 MCP!`!,QGMS#0N?94\CZ86(MCA`K`C\LD3;0]G%CF"4)`NMZLUGJ7+54<+Y67 5 MQI]>KE>Z26-'PGI?CY4+:-X##[(DW<(33,%W[,*10T?NV[VA`!EO(,-PNEZN 6 MU#9^SU8V<<BPW1,)R&-M:.RL\WDL8+]3!YAC+O&+0/(1#0LN@Q&/$%'W.D+$ 7 MVH3K2DM-T?5#DN7Z)3XH>]Y2$A_K$>?Z\0YW@*T<,$'2A+&0:F*]DK<;"^GJ 8 MIZEPB6F+?52FQ@Z3S-CA+B$1`C<:%Q0C!N$:A(5T<2W369->E)@W6)8XZ.!: 9 MZQL/19]4NK3'6_1X*QQVCX'V:8B5Q3.@4S_"LO+(JFDOD>]K(]VOY?G?Y<]H 10 M5R6/?N`E^'<O1MLT4]5*V-9]<Q4>=_LC/.]*NJQG#(58U;:TTF)EVU+I!M18 11 M"*@\=8NUD\O$?E.%TS<P_N__\>2IZZ%`VVE'F%?.4S,L/W*[,UBXZ`9PN,&5 12 *]05/O5#WGP4````` 27 13 ` 28 14 end -
Tst/Long/ncfactor_lee_l.tst
-
Property
mode
changed from
100755
to100644
r1f41352 rcbfc2f 8 8 setring(r); 9 9 poly L = 10x5d4+26x4d5+47x5d2-97x4d3; 10 facFirstWeyl(L); 10 def l=facFirstWeyl(L); 11 testNCfac (l, L); 12 l; 11 13 12 14 tst_status(); -
Property
mode
changed from
-
Tst/Long/ok_l.lst
r1f41352 rcbfc2f 46 46 mre 47 47 mre_nonhom 48 ncfactor_ tsai_l48 ncfactor_lee_l 49 49 paraplan 50 50 pAdd0L_l -
Tst/Manual/facFirstShift.res.gz.uu
r1f41352 rcbfc2f 1 begin 6 44 facFirstShift.res.gz2 M'XL(" (JNRU```V9A8T9I<G-T4VAI9G0N<F5S`)V1,6O#,!"%=_V*(V20$\=43 M=M*4FF @H)1`H'>IN)0V.8\<"HP3=E:C_OK(3V\5#ATZG=^_=QTE*WI\WKP`@4 M )+QLGF!$2$&E]J,8W&FGM"+NQ:RN("44:;96!BDI54&!SB\!4DHLN4'"&T1G5 M+D @G<R5U=B3!*'V$-UC!G<^MCYY_./?^7,(A+\`X6V>[M#KF>Y-RX6)]9B$!6 M <ZHQW/QJWTLXGZIO*-TLQ\]P8J?6FV`?6`Z6YZ6;_A#;1^;,MM;OT.BPTQA.7 M KZVH;S5ZWFD[$ZR=^(LTQ+3D`2GZSTYV0,+NX@^R^<GZG[Z0"R\>LQ_"*J0^8 $]`$`````1 begin 664 facFirstShift.res.gz 2 M'XL("%"R*5(``V9A8T9I<G-T4VAI9G0N<F5S`)V1,6O#,!"%=_V*(V20$]=4 3 M=M*4FFHHI1`('>IL)0V.8\<"HP3=E:K_OK(3V\%#ADZG=^_=AZ1+UJ_+=P`0 4 M$E;+%Q@14E"IW2@&=]HJK8A[,:LK2`E%FKTI@Y24JJ!`YS\!4DHLN4#""T1G 5 M+DA'<R9U=B3!*'V`#WB&>Y];'SU_?^K]F81]7H!QMLZV:77(=R;EPL7ZS%P" 6 MYE1CN+EJ/T@X':M?*-TLQZ]P8J?6FV`?6`PNSTLW_2DV3\R9;:W_H=%AI['1 7 M4:_#Z3DRZUKV3K!VXA:IG8P&\`$I^@_)#DC8/?Q1-INL]_2-7'CQF/T!<RK2 8 %H_0!```` 9 9 ` 10 10 end -
Tst/Manual/facFirstShift.stat
r1f41352 rcbfc2f 1 1 >> tst_memory_0 :: 13 55525762:3150:3-1-5:x86_64-Linux:snork:5035282 1 >> tst_memory_1 :: 13 55525762:3150:3-1-5:x86_64-Linux:snork:24535043 1 >> tst_memory_2 :: 13 55525762:3150:3-1-5:x86_64-Linux:snork:26132484 1 >> tst_timer_1 :: 13 55525762:3150:3-1-5:x86_64-Linux:snork:491 1 >> tst_memory_0 :: 1378464336:3.1.3.sw, 64 bit:spielwiese:x86_64-Linux:fifi.mathematik.uni-kl.de:512160 2 1 >> tst_memory_1 :: 1378464336:3.1.3.sw, 64 bit:spielwiese:x86_64-Linux:fifi.mathematik.uni-kl.de:2441216 3 1 >> tst_memory_2 :: 1378464336:3.1.3.sw, 64 bit:spielwiese:x86_64-Linux:fifi.mathematik.uni-kl.de:2513568 4 1 >> tst_timer_1 :: 1378464336:3.1.3.sw, 64 bit:spielwiese:x86_64-Linux:fifi.mathematik.uni-kl.de:33 -
Tst/Short/ncfactor_example2_7FromMaster_s.res.gz.uu
r1f41352 rcbfc2f 1 1 begin 644 ncfactor_example2_7FromMaster_s.res.gz 2 M'XL(" '/OQ5```VYC9F%C=&]R7V5X86UP;&4R7S=&<F]M36%S=&5R7W,N<F5S3 M`%U1 RVK#,!"\^RN6T(-D&1/939PV5(=2`@&WAZ300VF-8RG!X-A&4JGR]Y424 M O^A!K'9G=D>:W;^_;-\`@#)(M\\PTTJ'57F8K;U]AT0,;#$KZU(CO/9<!,:@5 M +HYYH1N9"9.?VTI$6;*1S?DU5UK(3(6U^`V5SO4P)^X4^L9_,O<,AOLB!%G66 M )]C!$\P#9`*.`]Z.W"4#+HX@+5P765Z=Q$'FB`84CYR$@1+:C4%R4EXQ:)OJ7 M `JGM189S(&`XH<0E9(%]@WV$D/$Y_HX(Q7Y'B&^$Q!'&80\,[%\VI53Z0UPJ8 M E%KLDWX]>A;KH_/VFD=#;B).#(_L(4M#;F@\16,RH:P,L?J])IV//E$:7E?C9 8;/Y1:'P8[7;6`=86N//^`#HO-X#J`0``2 M'XL(")C=*%(``VYC9F%C=&]R7V5X86UP;&4R7S=&<F]M36%S=&5R7W,N<F5S 3 M`%U136L",1"][Z\8I(=DLRPFZU<KYM`60;`>M-!#:9?51%F(JR0IC?^^B:N[ 4 M2P\AF7EOWDS>;-Y?%RL`H!R6BV?H66-356Y[TVAS0Q@'G\S+JK0(3Z-P`^=0 5 M[?;%SIYT+EUQ/"O)\O%<GXYOA;%2YR:MY&]J;&$;G>S6X5[XK\V`0_,>IJ#+ 6 MZ@!KF$$_02X1.!'GECOB(.0>M(>K75ZH@]SJ`M&$XI8SYF"D#3)(=](3#N>3 7 MNL#2UR(G!!!P@E`2`C+$L<,Q0LC%`G\S0G%\(V0U81P(K=AC/8>:^1_-2VWL 8 MA[PHM&P9M._-D\:N7CP#D$H@@+2!O>MJ&GW2KZ?(R]WOL(YKS)K8,4&<8/Z0 9 MD2,UFG71C'0H$T?\R$T7UEI+L_2ZS;"9'X,ZDPYX%_!.PD/T!_.AS@P=`@`` 10 10 ` 11 11 end -
Tst/Short/ncfactor_example2_7FromMaster_s.tst
r1f41352 rcbfc2f 7 7 setring(r); 8 8 poly L = (xdd + xd+1+ (xd+5)*x)*(((x*d)^2+1)*d + xd+3+ (xd+7)*x); 9 facFirstWeyl(L); 9 def l=facFirstWeyl(L); 10 testNCfac (l, L); 11 l; 10 12 11 13 tst_status(); -
Tst/Short/ncfactor_example_all_procedures_s.res.gz.uu
r1f41352 rcbfc2f 1 begin 6 44 ncfactor_example_all_procedures_s.res.gz2 M'XL(" ,KCQ5```VYC9F%C=&]R7V5X86UP;&5?86QL7W!R;V-E9'5R97-?<RYR3 M97,`K 5/M:X)`&/]^?\5#[,-"M/3408&PEP9!BX:##<80JVL)EN&=[/SO=Y?=4 M Z21:&R%X/&^_W_,:OCR,IP!@!S`9WT&'46:ER;PS1.'!X@0@E%&R3=AU=XCD5 M "T$`V\4J7K`LCPB/-[N41'&:1KL\6Y!ED1,:46M+OBS*8J:1\(%#A;:(W(I(6 M 6259KP<2$H3F,<DI>R5E"JL\VX`(A28.&KW=/LTFHP%ZMS\&2,"I5Q:WEQTM7 M \[V,:[ETC,K'K75"TZ8/U\F*78"?*KHZ!=JF-VVD(DXAM6&.%"*1\']RXBTD8 M VFQ(6,S/F4;=1$8HF]X+G]]#;-07GTJVKQO1UX68W!4SX[C$IBO^AL^=TC$Q9 M =XP;7FK*=;;)/M7PGO^R/'7SN;?T#%\3[T6.E]AP3]#(8[C$GE;<K:DT,CAC10 C0YKN1X!\?7Y>=7[R8@LJCT\9_!\&NSN$*_0-,;3#@S<$````1 begin 664 ncfactor_example_all_procedures_s.res.gz 2 M'XL("#VR*5(``VYC9F%C=&]R7V5X86UP;&5?86QL7W!R;V-E9'5R97-?<RYR 3 M97,`K9-M:\(P$,??YU,<LA>34K5-VX%"80\.!">.#C88HU2-LU"M-)&EWWZ) 4 M-6D7Q+DAA8:[R_U_R5TN>GD830#`"6$\NH,6HZR3I;/6`$6'B!N"<,;I)F77 5 M[0&2*X0A;.;+9,[R(B8\66\S$B=9%F^+?$X6NX+0F'8VY*M#6<*T$CXP5*H! 6 M\BJ0BDI8MPM2$H3G,2TH>R5E!LLB7X-(A:8.&K[=/DW'PSYZ=S[Z2,BI55YN 7 M;[O:YGL;UW;I6M4>K_8)CXF/5NF278!/#3X]@K<=I#).*:E,;(@;2O@_2MQ0 8 MHLV"1+O9.=VHB\@(99-[L>?W%`?UQ*<.V].%Z.F+V-P3/>.XQ+8G_E;`W=*U 9 M,7>M&UYJY"I?YY^J><]_>3QU\;F_\*U`@_<FQPML>2<P<A@N\4XKMM&5Q@G. 10 D>"'-[4>$`CU^?C5^<F)W5`Z?"@0_`DY[`%?H&R',((\W!``` 11 11 ` 12 12 end -
Tst/Short/ncfactor_example_all_procedures_s.stat
r1f41352 rcbfc2f 1 1 >> tst_memory_0 :: 13 55146179:3150:3-1-5:ix86-Linux:mamawutz:5244122 1 >> tst_memory_1 :: 13 55146179:3150:3-1-5:ix86-Linux:mamawutz:24535043 1 >> tst_memory_2 :: 13 55146179:3150:3-1-5:ix86-Linux:mamawutz:25524684 1 >> tst_timer :: 13 55146179:3150:3-1-5:ix86-Linux:mamawutz:6755 2 >> tst_memory_0 :: 13 55146179:3150:3-1-5:ix86-Linux:mamawutz:5250286 2 >> tst_memory_1 :: 13 55146179:3150:3-1-5:ix86-Linux:mamawutz:24535047 2 >> tst_memory_2 :: 13 55146179:3150:3-1-5:ix86-Linux:mamawutz:25524688 2 >> tst_timer_1 :: 13 55146179:3150:3-1-5:ix86-Linux:mamawutz:6761 1 >> tst_memory_0 :: 1378464317:3.1.3.sw, 64 bit:spielwiese:x86_64-Linux:fifi.mathematik.uni-kl.de:571856 2 1 >> tst_memory_1 :: 1378464317:3.1.3.sw, 64 bit:spielwiese:x86_64-Linux:fifi.mathematik.uni-kl.de:2461696 3 1 >> tst_memory_2 :: 1378464317:3.1.3.sw, 64 bit:spielwiese:x86_64-Linux:fifi.mathematik.uni-kl.de:2600960 4 1 >> tst_timer :: 1378464317:3.1.3.sw, 64 bit:spielwiese:x86_64-Linux:fifi.mathematik.uni-kl.de:119 5 2 >> tst_memory_0 :: 1378464317:3.1.3.sw, 64 bit:spielwiese:x86_64-Linux:fifi.mathematik.uni-kl.de:572584 6 2 >> tst_memory_1 :: 1378464317:3.1.3.sw, 64 bit:spielwiese:x86_64-Linux:fifi.mathematik.uni-kl.de:2461696 7 2 >> tst_memory_2 :: 1378464317:3.1.3.sw, 64 bit:spielwiese:x86_64-Linux:fifi.mathematik.uni-kl.de:2600960 8 2 >> tst_timer_1 :: 1378464317:3.1.3.sw, 64 bit:spielwiese:x86_64-Linux:fifi.mathematik.uni-kl.de:119 -
Tst/Short/ncfactor_inhomog_s.res.gz.uu
r1f41352 rcbfc2f 1 1 begin 644 ncfactor_inhomog_s.res.gz 2 M'XL(",SCQ5```VYC9F%C=&]R7VEN:&]M;V=?<RYR97,`M5#+:L,P$+S[*Y;0 3 M@VP9$TEN^@C5H91"H/30!'HHJ7$<QQ:X=I!4*OU]92=^M-!C3[N:F1T-L]X\ 4 MK)X!@'!X6MW#3"L=56(W6WKK,T,Y.#`1M=#(7WKM!,ZAS@YIIAOIB++Y:(I$ 5 M177^%2F=ZN&4G4U[[2_GF,.P7T8@15W`"]S!/$0FM'ZX/X[:!8=]?@#IZ#I+ 6 MTJK(=S)%)"3^J+GBH'+=VB`Y@:\Y')O*0NEND7EGV&#B!VZ+L0T,IA/I#0>7 7 M]%%(I5]S6Z'2<6]D>^LYKI]M6=V;#F_3>78@&\$8&XM9[TWFIQ[;@CX5&C\E 8 EI,]'3P%I8+%U`2TV@9WHZ#^&8W^%BW\0KFVX^`8P@!Z_,P(````` 2 M'XL(".3=*%(``VYC9F%C=&]R7VEN:&]M;V=?<RYR97,`C5'+:L,P$+S[*Y;0 3 M@VP9$\G.HS71H2V%0,FA*?106N,X3F)0[6"I5/K[RHY?22CT).W.:'9GM'Y] 4 M7*X`@#!X7M[#2`KI\6PS"JUU@U`&IAEE>2:1'5K5"8Q!GNSB1!:E`0[%5[&/ 5 MA)>G/YZ0L>R>^HUHR[U0#AAT]XD'99;OX046,':1<K7M;H\]=\I@F^Z@-'"> 6 M1#'?IYLR1L0E=L^9,1"IK&10.6C/&1P+KN%@WB+UZ6.%B>V86X"UHS`=4&]/ 7 M4_C"[/N4E4*^I9JC0\\@8Y-&*N3JP3``<1<JD'2PB9&'UCOYN+.,7'M6^=8U 8 M[6I5KU$W_;X98*6QWZDUT5>9?@LTV,)O+=&3)^IHK(TGC96C!SR3\*67@5TR 9 JN3)#S]Q,_^V&7GG1=1WTE(8Q&3#:.;._?,[/`//7<&/]`J4=PT.R`@`` 9 10 ` 10 11 end -
Tst/Short/ncfactor_inhomog_s.stat
r1f41352 rcbfc2f 1 1 >> tst_memory_0 :: 13 55146179:3150:3-1-5:ix86-Linux:mamawutz:5189682 1 >> tst_memory_1 :: 13 55146179:3150:3-1-5:ix86-Linux:mamawutz:23879683 1 >> tst_memory_2 :: 13 55146179:3150:3-1-5:ix86-Linux:mamawutz:25272324 1 >> tst_timer :: 13 55146179:3150:3-1-5:ix86-Linux:mamawutz:1255 2 >> tst_memory_0 :: 13 55146179:3150:3-1-5:ix86-Linux:mamawutz:6378726 2 >> tst_memory_1 :: 13 55146179:3150:3-1-5:ix86-Linux:mamawutz:23879687 2 >> tst_memory_2 :: 13 55146179:3150:3-1-5:ix86-Linux:mamawutz:25272328 2 >> tst_timer :: 13 55146179:3150:3-1-5:ix86-Linux:mamawutz:1139 3 >> tst_memory_0 :: 13 55146179:3150:3-1-5:ix86-Linux:mamawutz:63800010 3 >> tst_memory_1 :: 13 55146179:3150:3-1-5:ix86-Linux:mamawutz:238796811 3 >> tst_memory_2 :: 13 55146179:3150:3-1-5:ix86-Linux:mamawutz:252723212 3 >> tst_timer_1 :: 13 55146179:3150:3-1-5:ix86-Linux:mamawutz:2391 1 >> tst_memory_0 :: 1378409956:3170:3-1-7:ix86-Linux:mamawutz:500816 2 1 >> tst_memory_1 :: 1378409956:3170:3-1-7:ix86-Linux:mamawutz:2363392 3 1 >> tst_memory_2 :: 1378409956:3170:3-1-7:ix86-Linux:mamawutz:2502656 4 1 >> tst_timer :: 1378409956:3170:3-1-7:ix86-Linux:mamawutz:132 5 2 >> tst_memory_0 :: 1378409956:3170:3-1-7:ix86-Linux:mamawutz:505272 6 2 >> tst_memory_1 :: 1378409956:3170:3-1-7:ix86-Linux:mamawutz:2363392 7 2 >> tst_memory_2 :: 1378409956:3170:3-1-7:ix86-Linux:mamawutz:2502656 8 2 >> tst_timer :: 1378409956:3170:3-1-7:ix86-Linux:mamawutz:85 9 3 >> tst_memory_0 :: 1378409956:3170:3-1-7:ix86-Linux:mamawutz:505400 10 3 >> tst_memory_1 :: 1378409956:3170:3-1-7:ix86-Linux:mamawutz:2363392 11 3 >> tst_memory_2 :: 1378409956:3170:3-1-7:ix86-Linux:mamawutz:2502656 12 3 >> tst_timer_1 :: 1378409956:3170:3-1-7:ix86-Linux:mamawutz:219 -
Tst/Short/ncfactor_inhomog_s.tst
r1f41352 rcbfc2f 7 7 setring(r); 8 8 poly h = (x^3+x+1)*(x^4+y*x+2); 9 facFirstWeyl(h); 9 def l=facFirstWeyl(h); 10 testNCfac (l, h); 11 l; 10 12 tst_status(); 11 13 poly h2 = (x^2*y+y)*(y+x*y); 12 facFirstWeyl(h); 14 l=facFirstWeyl(h2); 15 testNCfac (l, h2); 16 l; 13 17 tst_status(); 14 18 tst_status(1); $ -
Tst/Short/ncfactor_koepf_s.res.gz.uu
r1f41352 rcbfc2f 1 1 begin 644 ncfactor_koepf_s.res.gz 2 M'XL("'?OQ5```VYC9F%C=&]R7VMO97!F7W,N<F5S`+5536O"0!"]YU<,TL/F 3 M$R>)7Y7NH92"(#W40@^EANA&"0U1DBV-_[Z;F&2+IB@:3[OS9N>]W9UA9O;V 4 M-'D!`*0PG3Q"AZ?<BL)%9ZS,2H]-08!>&(><J&,E7X%2B)<K?\DWB?>U";8K 5 M+[7BX,=*N<_K0*>DK$X>\+H4ZGW/@B2,U_`*#]`U2&8PU6!;>;9/@04K2(0[ 6 M7GI^M`X6B4_00%6>&5!(`Y[3D.0//*2PW40[F(I8DLU=$U4MT]C<U@GJ`TT@ 7 MJL;TH=@X,FA$0=SY.4Q2_A[L(C(5A!_X>:\(7[7FGU;8=FVSPG9J.V.F74"N 8 MA/1]4$\B=@GU)62B4M%>*6>>(R>0BN9*.?OX><VO<V\E9S:^KG>CW!VKY5>J 9 M[-9S=_R7A=S@I)R@QP-%=G%E#EN1.[LR1ZW(G5V9V+V57G-IXNF^<EGV_JE- 10 L/-U8+DM?<W&6+16[LMTC6L5(R:?%=TIDL\9RUI0.T=WA3OD%_4G)*:(&```` 2 M'XL("%[>*%(``VYC9F%C=&]R7VMO97!F7W,N<F5S`+552VO"0!"^YU<,TL/F 3 MB;N)KXI[:$M!$`^UT$.I(;I10I<HR9;&?]]--%G1%,7':7>^>7R[,\/,Y/UE 4 M.`8`3&$T?(*&2(7#HUFCKTUV&D)!@GX41P+I?2T_@5*(YXM@+E:)_[T*UPL_ 5 M=>+PUTE%("I'=Q>RM#R(ZU&H[BT'DBA>PAL,H&FAS&*ZQ=;*MDV!A0M(I#J> 6 M^P%?AK,D0-C"NK+I4$A#D8=!R1[<I;!>\0V,I"_*IIZ-=2,SV)28")L=0R*Z 7 MP<RNO+C*J;?EXP/Y\M<H2<5'N.%HI,+BILQ*F(KQL[0`Q"W(E;A2RW3ROO:) 8 MOQXU&:X\\SP7,JED5LAN)6?,)@7D*<C<.K440G906T$VULJP5]+9Y]!)I`QS 9 M)1TY_E[][[Q[T=FUOVO=J7;';/F32OGFM3O.94'7.4DGP^,#1G9Q9W9O0G=V 10 M9_9N0G=V9^+FO?CJ6Q.?GBN75>^?WL2G!\MEY:MOSG*($K4AL.L46RA?,#\I 11 4VAO$'MU7R(4`#]H?T+HH@=4&```` 11 12 ` 12 13 end -
Tst/Short/ncfactor_koepf_s.tst
r1f41352 rcbfc2f 7 7 setring(r); 8 8 poly L = (x^4-1)*x*d^2+(1+7*x^4)*d+8*x^3; 9 facFirstWeyl(L); 9 def l=facFirstWeyl(L); 10 testNCfac (l, L); 11 l; 10 12 11 13 tst_status(); -
Tst/Short/ncfactor_tsai_s.res.gz.uu
r1f41352 rcbfc2f 1 1 begin 644 ncfactor_tsai_s.res.gz 2 M'XL("(?OQ5```VYC9F%C=&]R7W1S86E?<RYR97,`?9++:L,P$$7W_HHA="%7 3 MEHD><1^A6I12"(0NFD(7I3%.Y`2#<8*M4N7O.Q)V'%KH1C.:<W7%:+1Z>UJ\ 4 M``#7L%P\PL1V-JVKS60>K7HB-&`QKYK*DG@>^0A:0[/=%5M[:'/;%57>I4WY 5 MG7:VL.=SLG<<A+]LE89S/DNAK9H]O,(#3!/B$A,GYCAJ,PVFW$&+N-GF1;TO 6 M-VU!>,+C47.CH2NMMR'M1?E6P_%0GV")9XE;9U1<N[5B$E<17YNU8$1A/F,J 7 MU+G'(@2D0(%D8UVR+%"!6JQ<W'*G`9M\KMK.OI>GFBR1??#/^PC9$/TCA[TX 8 M[YTRU$G#E)-4.F$8+I@8ECDF@U:.6L1(A*,J&BS^MV;>6O;6-'.">6OI*!=_ 9 FO6E`C`\M\>DX'\[3\`7\>+\Z,O;-^[_1`QP'7$4_Y/(Y[%("```` 2 M'XL("`O>*%(``VYC9F%C=&]R7W1S86E?<RYR97,`?9++:L,P$$7W_HHA="%7 3 MEHD><1\A6K2E$`A9-(4N2F.<R`D&XP1+I<K?=^PFMFFA&\UHSM6U-:/5Z]-\ 4 M"0!<PV+^`"-G75P6F]$T6)V)T(#%M*@*1\)IT$30&JKM+MNZ0YTZFQ6IC:O\ 5 M*[8N<]TY>7:\"'_9*@U=/HFA+JH]O,`,QA'QD0DC<^RUB0:3[Z!&7&W3K-SG 6 MFSHC/.)AK[G18'/7V)!Z4+[5<#R4)UC@6>+7"177?JV8Q%6$UV8M&%&83YAJ 7 MZ[S!H@U(@0))^KID24L%:K$R^,K=SP^6,[SJ<U%;]Y:?2K+H%7R,7<RM6SZB 8 M`D@900-YA[']Y31XYQ_W`=I=8C.7=B^ZO5>&>FF8\I)*+PS#!1/#$L]DJY6] 9 M%C$2X:D*+A;_6[/&6IZM:>(%:ZREIUS\]:8M8OTE1#]2+N/VU30OXM.202.4 10 /'@*<(%P%WT9(V`>%`@`` 10 11 ` 11 12 end -
Tst/Short/ncfactor_tsai_s.tst
r1f41352 rcbfc2f 7 7 setring(r); 8 8 poly L = (x^6+2*x^4-3*x^2)*d^2-(4*x^5-4*x^4-12*x^2-12*x)*d + (6*x^4-12*x^3-6*x^2-24*x-12); 9 facFirstWeyl(L); 9 def l=facFirstWeyl(L); 10 testNCfac (l, L); 11 l; 10 12 11 13 tst_status(); -
Tst/Short/ok_s.lst
r1f41352 rcbfc2f 209 209 ; mpsr_s 210 210 mres_s 211 ncfactor_example2_7FromMaster_s 211 212 ncfactor_example_all_procedures_s 212 213 ncfactor_inhomog_s 214 ncfactor_koepf_s 215 ncfactor_koepfShift_s 216 ncfactor_tsai_s 213 217 normal 214 218 parallel_s
Note: See TracChangeset
for help on using the changeset viewer.