Changeset cbfc2f in git


Ignore:
Timestamp:
Sep 6, 2013, 2:24:00 PM (10 years ago)
Author:
Oleksandr Motsak <motsak@…>
Branches:
(u'jengelh-datetime', 'ceac47cbc86fe4a15902392bdbb9bd2ae0ea02c6')(u'spielwiese', 'f875bbaccd0831e36aaed09ff6adeb3eb45aeb94')
Children:
4401c687951c96cf1094bab8118bc46ab9e3e5fa
Parents:
1f4135239e4f72e97d56ca7e4f953e9604cc12185831a559c7405b616a323b26dcd801d0c9b57674
Message:
Merge pull request #362 from mmklee/ncfactor_sw

Ncfactor sw
Files:
5 added
3 deleted
21 edited

Legend:

Unmodified
Added
Removed
  • Singular/LIB/ncfactor.lib

    r1f41352 rcbfc2f  
    44info="
    55LIBRARY: ncfactor.lib  Tools for factorization in some noncommutative algebras
    6 AUTHORS: Albert Heinle,     albert.heinle@rwth-aachen.de
     6AUTHORS: Albert Heinle,     aheinle@uwaterloo.ca
    77@*       Viktor Levandovskyy,     levandov@math.rwth-aachen.de
    88
    99OVERVIEW: In this library, new methods for factorization on polynomials
    10 @*  are implemented for two algebras, both generated by two generators (Weyl and
    11 @*  shift algebras) over a field K. Recall, that   the first Weyl algebra over K
    12 @*  is generated by x,d obeying the relation d*x=x*d+1.
     10  are implemented for two algebras, both generated by two generators (Weyl and
     11  shift algebras) over a field K. Recall, that   the first Weyl algebra over K
     12  is generated by x,d obeying the relation d*x=x*d+1.
    1313@* The first shift algebra over K is generated by x,s obeying the relation s*x=x*s+s.
    1414@* More detailled description of the algorithms can be found at
     
    3535LIB "crypto.lib"; //for introot
    3636LIB "matrix.lib"; //for submatrix
     37LIB "solve.lib"; //right now not needed
    3738LIB "poly.lib"; //for content
    3839
     
    11631164    dbprint(p,dbprintWhitespace +" Done");
    11641165  }
     1166  if (homogwithorder(h,intvec(-1,1)))
     1167  {
     1168    dbprint(p, dbprintWhitespace + " Polynomial was homogeneous, therefore we have
     1169already a complete factorization and do not have to go through the factors recursively.");
     1170    return(result);
     1171  }
     1172  dbprint(p,dbprintWhitespace + "We have the following intermediate list of inhomogeneous
     1173factorizations:");
     1174  dbprint(p,result);
    11651175  dbprint(p,dbprintWhitespace +" recursively check factors for irreducibility");
    11661176  list recursivetemp;
     
    12021212    result = list(list(1,h));
    12031213  }//only the trivial factorization could be found
     1214  list resultWithInterchanges;
     1215  dbprint(p,dbprintWhitespace+ "And the result without interchanges with homogeneous factors is:");
     1216  dbprint(p,result);
     1217  for (i = 1; i <= size(result) ; i++)
     1218  {//applying the interchanges to result
     1219    resultWithInterchanges = resultWithInterchanges +
     1220                             checkForHomogInhomogInterchangability(result[i],2,size(result[i]));
     1221  }//applying the interchanges to result
     1222  dbprint(p,dbprintWhitespace + "With interchanges, the result is:");
     1223  dbprint(p,resultWithInterchanges);
    12041224  //now, refine the possible redundant list
    1205   return( delete_dublicates_noteval(result) );
     1225  return( delete_dublicates_noteval(resultWithInterchanges) );
    12061226}//proc facFirstWeyl
    12071227example
     
    12181238/////BRANDNEW!!!!////////////////////
    12191239//////////////////////////////////////////////////
     1240
     1241static proc checkForHomogInhomogInterchangability(list factors, posLeft, posRight)
     1242"
     1243INPUT:  A list consisting of factors of a certain polynomial in the first Weyl
     1244        algebra, factors, and a position from the left and the right, where the last swap was done.
     1245OUTPUT: A list containing lists consisting of factors of a certain polynomial in the first Weyl
     1246        algebra.
     1247The purpose of this function is to check whether we can interchange certain inhomogeneous factors
     1248with homogeneous ones. If it is possible, this function returns a list of lists
     1249of possible interchanges.
     1250
     1251The idea came because of an example, where we need an extra swap in the end, otherwise we would
     1252not capture all factorizations. The example was
     1253h = x4d7+11x3d6+x2d7+x2d6+x3d4+29x2d5+xd6+8xd5+d6+5x2d3+14xd4+13d4+5xd2+d3+d;
     1254
     1255ASSUMPTIONS:
     1256
     1257- All factors are irreducible
     1258"
     1259{//checkForHomogInhomogInterchangability
     1260  int p = printlevel-voice+2;
     1261  string dbprintWhitespace = "";
     1262  int i; int j; int k;
     1263  for (i = 1; i<=voice;i++)
     1264  {dbprintWhitespace = dbprintWhitespace + " ";}
     1265  if (size(factors) <= 2 || posLeft >= posRight - 1)
     1266  {//easiest case: There is nothing to swap
     1267    return (list(factors));
     1268  }//easiest case: There is nothing to swap
     1269  list result = list(factors);
     1270  list tempResultEntries;
     1271  list tempSwaps;
     1272  list tempSwapsTempEntry;
     1273  list attemptToSwap;
     1274  intvec ivm11 = intvec(-1,1);
     1275  dbprint(p, dbprintWhitespace+"We try to swap elements in the following list:");
     1276  dbprint(p, factors);
     1277  for (i = posLeft; i < posRight; i++)
     1278  {//checking within the window posLeft <--> posRight, if there are interchanges possible
     1279    if (homogwithorder(factors[i],ivm11) && !homogwithorder(factors[i+1],ivm11))
     1280    {//position i is homogeneous, position i+1 is not ==> trying to swap
     1281      attemptToSwap = extractHomogeneousDivisorsRight(factors[i]*factors[i+1]);
     1282      if (size(attemptToSwap[1])>1)
     1283      {//Bingo, we were able to swap this one element
     1284        dbprint(p,dbprintWhitespace+"We can swap entry "+string(i)+" and "+ string(i+1));
     1285        dbprint(p,dbprintWhitespace+"The elements look like the following after the swap:");
     1286        dbprint(p,attemptToSwap);
     1287        tempSwapsTempEntry = list();
     1288        for (j = size(factors); j >=1; j--)
     1289        {//creating a new entry for the resulting list, replacing the swap in factors
     1290          if (j==i+1)
     1291          {
     1292            for (k = size(attemptToSwap[1]); k >=1 ; k--)
     1293            {
     1294              tempSwapsTempEntry = insert(tempSwapsTempEntry, attemptToSwap[1][k]);
     1295            }
     1296            j--; //Because we changed entry i+1 and i
     1297          }
     1298          else
     1299          {
     1300            tempSwapsTempEntry = insert(tempSwapsTempEntry,factors[j]);
     1301          }
     1302        }//creating a new entry for the resulting list, replacing the swap in factors
     1303        tempSwaps = insert(tempSwaps,list(list(i+1,posRight),tempSwapsTempEntry));
     1304      }//Bingo, we were able to swap this one element
     1305    }//position i is homogeneous, position i+1 is not ==> trying to swap
     1306    else
     1307    {
     1308      if(!homogwithorder(factors[i],ivm11) && homogwithorder(factors[i+1],ivm11))
     1309      {//position i+1 is homogeneous, position i is not ==> trying to swap
     1310        attemptToSwap = extractHomogeneousDivisorsLeft(factors[i]*factors[i+1]);
     1311        if (size(attemptToSwap[1])>1)
     1312        {//Bingo, we were able to swap this one element
     1313          dbprint(p,dbprintWhitespace+"We can swap entry "+string(i)+" and "+ string(i+1));
     1314          dbprint(p,dbprintWhitespace+"The elements look like the following after the swap:");
     1315          dbprint(p,attemptToSwap);
     1316          tempSwapsTempEntry = list();
     1317          for (j = size(factors); j >=1; j--)
     1318          {//creating a new entry for the resulting list, replacing the swap in factors
     1319            if (j==i+1)
     1320            {
     1321              for (k = size(attemptToSwap[1]); k >=1 ; k--)
     1322              {
     1323                tempSwapsTempEntry = insert(tempSwapsTempEntry, attemptToSwap[1][k]);
     1324              }
     1325              j--; //Because we changed entry i+1 and i
     1326            }
     1327            else
     1328            {
     1329              tempSwapsTempEntry = insert(tempSwapsTempEntry,factors[j]);
     1330            }
     1331          }//creating a new entry for the resulting list, replacing the swap in factors
     1332          tempSwaps = insert(tempSwaps,list(list(posLeft,i),tempSwapsTempEntry));
     1333        }//Bingo, we were able to swap this one element
     1334      }//position i+1 is homogeneous, position i is not ==> trying to swap
     1335    }
     1336  }//checking within the window posLeft <--> posRight, if there are interchanges possible
     1337  //Now we will recursively call the function for all swapped entries.
     1338  dbprint(p,dbprintWhitespace+ "Our list of different factorizations is now:");
     1339  dbprint(p,tempSwaps);
     1340  for (i = 1; i<=size(tempSwaps);i++)
     1341  {//recursive call to all formerly attempted swaps.
     1342    tempResultEntries=checkForHomogInhomogInterchangability(tempSwaps[i][2],
     1343                                                            tempSwaps[i][1][1],tempSwaps[i][1][2]);
     1344    result = result + tempResultEntries;
     1345  }//recursive call to all formerly attempted swaps.
     1346  result = delete_dublicates_noteval(result);
     1347  return(result);
     1348}//checkForHomogInhomogInterchangability
    12201349
    12211350static proc sfacwa(poly h)
     
    12691398  }//Going through all different kinds of factorizations where we extracted homogeneous factors
    12701399  dbprint(p,dbprintWhitespace +" Done");
     1400  dbprint(p,dbprintWhitespace + "The set is:");
     1401  dbprint(p,inhomogeneousFactorsToFactorize);
    12711402  dbprint(p,dbprintWhitespace+ "Factorizing the different occuring inhomogeneous factors");
    12721403  for (i = 1; i<= size(inhomogeneousFactorsToFactorize); i++)
     
    13131444                           posInhomogPoly-1);
    13141445      }//Inserting factorizations
     1446      dbprint(p,dbprintWhitespace + "Added a factorization to result, namely:");
     1447      dbprint(p, result[1]);
    13151448    }
    13161449  }//going through all by now calculated factorizations
     
    16391772  option(redSB);
    16401773  dbprint(p,dbprintWhitespace+" Calculating reduced Groebner Basis of that system.");
    1641   solutionSystemforqs = std(solutionSystemforqs);
     1774  solutionSystemforqs = slimgb(solutionSystemforqs);
    16421775  dbprint(p,dbprintWhitespace+" Done!, the solution for the system is:");
    16431776  dbprint(p,dbprintWhitespace+string(solutionSystemforqs));
    1644   if(vdim(std(solutionSystemforqs+theta))==0)
     1777  if(vdim(slimgb(solutionSystemforqs+theta))==0)
    16451778  {//No solution in this case. Return the empty list
    16461779    dbprint(p,dbprintWhitespace+"The Groebner Basis of the solution system was <1>.");
     
    16481781    return(list());
    16491782  }//No solution in this case. Return the empty list
    1650   if(vdim(std(solutionSystemforqs+theta))==-1)
     1783  if(vdim(slimgb(solutionSystemforqs+theta))==-1)
    16511784  {//My conjecture is that this would never happen
    16521785    //ERROR("This is an counterexample to your conjecture. We have infinitely many solutions");
     
    16591792  else
    16601793  {//We have finitely many solutions
    1661     if(vdim(std(solutionSystemforqs+theta))==1)
     1794    if(vdim(slimgb(solutionSystemforqs+theta))==1)
    16621795    {//exactly one solution
    16631796      for (i = 2; i<= size(qs)-1;i++)
     
    17641897  string dbprintWhitespace = "";
    17651898  int i; int j; int k; int l;
     1899  list result;
    17661900  for (i = 1; i<=voice;i++)
    17671901  {dbprintWhitespace = dbprintWhitespace + " ";}
     
    17691903  {//given polynomial was homogeneous already
    17701904    dbprint(p,dbprintWhitespace+"Polynomial was homogeneous. Just returning all factorizations.");
    1771     return(homogfacFirstWeyl_all(h));
     1905    result = homogfacFirstWeyl_all(h);
     1906    for (i = 1; i<=size(result);i++)
     1907    {//removing the first entry (coefficient) from the list result
     1908      result[i] = delete(result[i],1);
     1909    }//removing the first entry (coefficient) from the list result
     1910    return(result);
    17721911  }//given polynomial was homogeneous already
    1773   list result;
    17741912  dbprint(p,dbprintWhitespace+"Calculating list with all homogeneous left divisors extracted");
    17751913  list leftDivisionPossibilities = extractHomogeneousDivisorsLeft(h);
     
    18952033  {//given polynomial was homogeneous already
    18962034    dbprint(p,dbprintWhitespace+"Polynomial was homogeneous. Just returning all factorizations.");
    1897     return(homogfacFirstWeyl_all(h));
     2035    result = homogfacFirstWeyl_all(h);
     2036    for (i = 1; i<=size(result);i++)
     2037    {//removing the first entry (coefficient) from the list result
     2038      result[i] = delete(result[i],1);
     2039    }//removing the first entry (coefficient) from the list result
     2040    return(result);
    18982041  }//given polynomial was homogeneous already
    18992042  list hlist = homogDistribution(h);
     
    19992142  {//given polynomial was homogeneous already
    20002143    dbprint(p,dbprintWhitespace+"Polynomial was homogeneous. Just returning all factorizations.");
    2001     return(homogfacFirstWeyl_all(h));
     2144    result = homogfacFirstWeyl_all(h);
     2145    for (i = 1; i<=size(result);i++)
     2146    {//removing the first entry (coefficient) from the list result
     2147      result[i] = delete(result[i],1);
     2148    }//removing the first entry (coefficient) from the list result
     2149    return(result);
    20022150  }//given polynomial was homogeneous already
    20032151  list hlist = homogDistribution(h);
     
    20792227  }
    20802228  return(result);
    2081 }//extractHomogeneousDivisorsLeft
     2229}//extractHomogeneousDivisorsRight
    20822230
    20832231static proc fromZeroHomogToThetaPoly(poly h)
     
    22352383  //First, we are going to deal with our most hated guys: The Coefficients.
    22362384  //
    2237   list coeffTuplesMax = getAllCoeffTuplesComb(factorizeInt(int(f1[1][1])));
     2385  list coeffTuplesMax = getAllCoeffTuplesComb(factorizeInt(number(f1[1][1])));
    22382386  //We can assume without loss of generality, that p_max has a
    22392387  //nonnegative leading coefficient
     
    22462394    }
    22472395  }//Deleting all tuples with negative entries for p_max
    2248   list coeffTuplesMin = getAllCoeffTuplesComb(factorizeInt(int(f2[1][1])));
     2396  list coeffTuplesMin = getAllCoeffTuplesComb(factorizeInt(number(f2[1][1])));
    22492397
    22502398  //Now, we will be actally dealing with the Combinations.
     
    38093957  if (size(list_not_azero)!=0)
    38103958  {//Compute all possibilities to permute the x's resp. the y's in the list
    3811     if (list_not_azero[1] == x)
     3959    if (list_not_azero[1] == var(1))
    38123960    {//h had a negative weighted degree
    38133961      shift_sign = 1;
    3814       shiftvar = x;
     3962      shiftvar = var(1);
    38153963    }//h had a negative weighted degree
    38163964    else
    38173965    {//h had a positive weighted degree
    38183966      shift_sign = -1;
    3819       shiftvar = y;
     3967      shiftvar = var(2);
    38203968    }//h had a positive weighted degree
    38213969    result = permpp(list_azero + list_not_azero);
     
    38904038      {//the jth entry is theta and can be written as x*y
    38914039        thetapos = j;
    3892         result[i]= insert(result[i],x,j-1);
     4040        result[i]= insert(result[i],var(1),j-1);
    38934041        j++;
    3894         result[i][j] = y;
     4042        result[i][j] = var(2);
    38954043        found_theta = 1;
    38964044        break;
     
    38994047      {
    39004048        thetapos = j;
    3901         result[i] = insert(result[i],y,j-1);
     4049        result[i] = insert(result[i],var(2),j-1);
    39024050        j++;
    3903         result[i][j] = x;
     4051        result[i][j] = var(1);
    39044052        found_theta = 1;
    39054053        break;
     
    39154063      rparts = list(rightpart);
    39164064      //first deal with the left part
    3917       if (leftpart[thetapos] == x)
     4065      if (leftpart[thetapos] == var(1))
    39184066      {
    39194067        shift_sign = 1;
    3920         shiftvar = x;
     4068        shiftvar = var(1);
    39214069      }
    39224070      else
    39234071      {
    39244072        shift_sign = -1;
    3925         shiftvar = y;
     4073        shiftvar = var(2);
    39264074      }
    39274075      for (j = size(leftpart); j>1;j--)
     
    39494097      }//drip x resp. y
    39504098      //and now deal with the right part
    3951       if (rightpart[1] == x)
     4099      if (rightpart[1] == var(1))
    39524100      {
    39534101        shift_sign = 1;
    3954         shiftvar = x;
     4102        shiftvar = var(1);
    39554103      }
    39564104      else
    39574105      {
    39584106        shift_sign = -1;
    3959         shiftvar = y;
     4107        shiftvar = var(2);
    39604108      }
    39614109      for (j = 1 ; j < size(rightpart); j++)
     
    43404488def R = nc_algebra(1,1);
    43414489setring R;
    4342 LIB "ncfactor.lib";
     4490LIB "/Users/albertheinle/Studium/forschung/ncfactor/versionen/ncfactor.lib";
    43434491poly t = x; poly D =d;
    43444492poly p = 2*t^2*D^8-6*t*D^8+2*t^2*D^7+8*t*D^7+12*D^7-2*t^4*D^6+6*t^3*D^6+12*t*D^6-20*D^6
  • Singular/singular-libs

    r5831a55 rcbfc2f  
    4545        locnormal.lib modnormal.lib \
    4646        JMBTest.lib JMSConst.lib multigrading.lib parallel.lib realizationMatroids.lib ringgb.lib \
    47         schreyer.lib symodstd.lib derham.lib polybori.lib
     47        schreyer.lib symodstd.lib derham.lib polybori.lib ellipticcovers.lib
    4848
    4949PLIBS = bfun.lib central.lib dmod.lib dmodapp.lib dmodvar.lib fpadim.lib \
  • Tst/Long/ncfactor_counterExOld_l.res.gz.uu

    r1f41352 rcbfc2f  
    1 begin 644 ncfactor_counterExOld_l.res.gz
    2 M'XL("#,APE```VYC9F%C=&]R7V-O=6YT97)%>$]L9%]L+G)E<P"M6%M3XS88
    3 M?<^OT`,/W04[NO@2NYV="9!"NL`R&]@^=#N,$HN@0;:RLD-)'_K;*SNVN<59
    4 M*]B3R_B3?,YWTY$2`#9<D_'%R?79\.NFL1=7OP>&X$C&BV7&%!B*.9LJ"B:K
    5 M-&,QN)4*7$JQ2F3,J2BGT8S+)*T>U^\'IE)M`L1"EMO[*6/S!7_K@>DJ!'_:
    6 MX)C-[IDZ`">V=6Z#$\663.1WX/*6:]?TR*D-)K,[R1(6TR0IGO^NWW\L!<`0
    7 MX=[OA^"<9G=Z-./W(-+!72>\<#6C+#L`QY;G>RX!GRE/M570/`%)Y<KW7K\/
    8 M/GX$0M*(1:`_7"P$GZU#[T]X,E\*JOI%Q/VS\6$_2S-;\"GX!3G.`!_D'E@0
    9 M63#XT.,)S\"G3^!Z,BK*$5(Q94I[QA/!ZM'3+Y.KB^'Y*!Q_&9[:0LZHJ,>6
    10 M"8T9L&AX3-4_/`%/4P""]L"&H!SXK"-@`GPK"[(>#,'5DNF\Z-A\@+R0D)!X
    11 MX/+X*L\3^A4H*;/P,5E:R(6.C5R;_(?Z7T=GH^%D=#,F`P]P_5$[$]&,%6&<
    12 M2X`]<"$?BGP#C$/HA\0!1Z.K>G+5&B'1X+4UX[/[O(%"5)OR=.L<WO!Y(A4+
    13 MP=&W"1@?@[UQM&=8B61V2V>95$4Y=GA^H?N]*N7`K4KI6`1^,$12VE0BN0C"
    14 M$LFWD#'20O$X8K/*+9]4;I$=W*+3-,]0!88"E(/I7G5UF*9@F>*TCI(X09!C
    15 M02M_N<;YHDDDX\HOST-UD-`8BPG>$1)/Y#+K)L!4B@=60?F$E%#:,<\42JN:
    16 MXH\5EN<.2BQD(6.LF5HM,EEEBT"O[`?/PKXIUJUB;#ZML#`D3[UEG*[I[3+I
    17 M!FFAV//<OQ,MBF5$%XL*+`@&97MYN_3$DT@X`P?6<H.-U_7\/JI['F/B:B@8
    18 MY!T!R2X1UML9+ONA>!GWEDPR)44W37\G8RGDO)MU'3%]NHF[6=CS.'U>1Q0X
    19 M[Y!4P1,JYMUD[,>=KN12\&X:7V]H#U1UD[)_F9(IZTA8\_V19_RA&S0=I13+
    20 MK)L%D,R>BOG.].M##:_.`)@06"]P;-P7B3XA29'6?CE>[9<YV%R?P14530>*
    21 MO]#?8?ZKH/K6%RKN<7W_B*/]M8T\MUF/I=79:'5?/(]S<X79%=?^9BY-1'8F
    22 MPB9,15!.UUS-^7-WI3*H5$'D=4G45"2_#4GM9:O4X2TQ#;JGV\1%"K+@'61&
    23 MH6DN!+LF:VB-=6BHE6)LIMLWH5NSM=(,$[;&-+82#8MT4+3U:D:ME,.,<&OA
    24 M6LE'`Y_Q<D.M-,2$;4MD[:2D@<M8\5$[*3&BV](F[;0$OW_!E9MT.SDQX6O>
    25 MJ'$[,=E,9K@+E.&U$Q0SQFW+#K?3E89\FFT%N)VDM.?:MA.@XM_"-+N)62S5
    26 MZ@:",'SV[V=(',_'T'DS#[V:AP/7=Z`W>#,1OP9T'>)C'S]-S'C,U&LXUPEZ
    27 G^*>^N;XW&+R9U^C;ZXF-ON$7OKT%S+WK[1VNF-W[']K<[5P<&```
     1begin 664 ncfactor_counterExOld_l.res.gz
     2M'XL("+*;*5(``VYC9F%C=&]R7V-O=6YT97)%>$]L9%]L+G)E<P"MEDUK@T`0
     3MAN_^BB'T8!HKV36?#=U#OR`04F@*/9163+1%6$S1+37_OFN,F@979EM/ZLSL
     4M/,ZX^SJKI]OY$@`(@\7\&CHB$38/UYV9L3IX*`-I=,,H%&9W9F178`RBS;NW
     5M$=O8W6R_(A'$=^D#]UUN1\&WG0A/E.N=0^9BP4GZ`8/R?FA#'$8?\`A7T+?,
     6MU/*[EO]9Q8X8^,$[Q-(=;5R/?P3KV#.)1;I5S)A!$H@LC1D?F2<,/K=\!PNY
     7MUB2]](V>^]VW014PS7/S*_F6]V&<B.=@Q\U%E8+T92."1"QO9`28W(+,24JW
     8M[""?&2_D]=*0Z8IKUMK],RV?4^KW<IMS;+M(#];!K\C".CQ97R34!]5B%!"G
     9M3<A%?2V9M0ALJVT*%-VSAG]FT?IOI$:-VD8UM'",896-0=%H`V[2/JZ.Y>QA
     10MTW_`M$J3+-)O&Z;8C7EI!*48];@>OH\9"249.J2F$TU0VE%MA;_C\J-&4!*B
     11MQ5.++T%IB`*F>=H.Y:&D1)/8N"]Q>J+HI^:1PXD)GM5\XG!JXK0@)_FWHSA%
     12MT0(V%4AQDE+/T_X14)RL:-`:*L.)BH*E_4NE.$W1PBFW23%(TFHB)HZ]'[ZS
     138@?HK,8^&T0$[=L@!&,Z,'P.DEAK,"P``
    2814`
    2915end
  • Tst/Long/ncfactor_counterExOld_l.tst

    • Property mode changed from 100755 to 100644
    r1f41352 rcbfc2f  
    88setring(r);
    99poly L = (1+x^2*d)^4;
    10 facFirstWeyl(L);
     10def l=facFirstWeyl(L);
     11testNCfac (l, L);
     12l;
    1113
    1214tst_status();
  • Tst/Long/ncfactor_lee_l.res.gz.uu

    r1f41352 rcbfc2f  
    11begin 644 ncfactor_lee_l.res.gz
    2 M'XL("#,APE```VYC9F%C=&]R7VQE95]L+G)E<P"U5UU3XS84?<^ON`\\='>Q
    3 MHP];=MS.S@1((5U@F0UL'[H=1HE%T"!;J6+3I`_][96=V,D&*./@]>1CKG1U
    4 M=.Z]1[($\,PS&EZ>WISWOSS7]]W3[4`?CG4RRS-AH*^F8FPXC);S3"1PIPU<
    5 M:;5,=2*Y6KOQ3.IT7@VWWT=AYK8)J(,=O_/JC"\_Z)<.C)<1_.["B9@\"',(
    6 MIZYSX<*I$;E0A057=])2LSUG+HPF]UJD(N%I6H[_9K^_Y0H(PJ3SZQ%<\.S>
    7 M]F;R`6(;W$TJ2ZH9%]DAG#@L8#Z%3US.;:OB10+2BLJW3K<+[]^#TCP6,73[
    8 MLYF2DU7HW9%,I[GBIEM&W#T?'G6S>>8J.8:?L.>%Y+!@X"#LH-Z[CDQE!A\_
    9 MPLUH4)8CXFHLC&4F4R7JWK//H^O+_L4@&G[NG[E*3[BJ^_*4)P(<'IUP\[=,
    10 M8>,"&+FABV#=\<E&(!1\71=DU1G!=2YL7FQL`6`641I1!E<GUT6>\,]@M,ZB
    11 M19H[V$>>BWV7_HN[7P;G@_YH<#ND(0-I?VHR,<]$&<:%!L+@4C^6^09"(HPC
    12 MC\'QX+IVKJ0140M>MV9R\E`(*,)U4Y%NF\-;.4VU$1$<?QW!\`0.AO%!PTJD
    13 MDSL^R;0IR[''^)G5>U7*T*]*Z3D4O6N(9&S3&LG'"*V1`@<W1IH9F<1B4M$*
    14 M:$6+[D&+C^=%ABHPW,,%F-6J;\-L"I89R>LHJ=?K%5C(*3Y^XWSQ--9)Q8LQ
    15 M7`>)&F,))5M"DJG.LW8"G&OU*"JH@-(UE"7&FD+97<W(187%_'"-A1W<&&MB
    16 MEK-,5]FBB*WUP!P2-,6Z,T),QQ46072CK<;I&M_E:3M(,R.V<_]&M#C1,9_-
    17 M*K!>+US+B^VCB<TFX84>JK<;TGA=3Q_B6O.$4-]"H5ZA"$3WB;!^G9&U'LI/
    18 M8VWI-#-:M2/Z>YUHI:?MK.M8V---TL["GB;S[3KBGO>&+57)E*MI.QG[Z]Y6
    19 M,E>R'>';%]HC-^VD[!]A]%RTM+$6[T>9R<=VT&R46N59.PL@G6R*^<;TVT.-
    20 MK,X`A%)4+W#26!>I/2%I-:]Y>:SFU1QL:L_@AJN7#A1_X#^CXE90_=L'ES;9
    21 MV&CAQ>0#80L:TP]>L/!L6($UG"!<$-M36/;79XO8%I25PVD]?%':7FW'I>UO
    22 MV=5</XY#O,.A<.I4_?\S[>*56!8[L:QLMDV[9+WB[/2"%9%@AUBXG0SO=5:Q
    23 M0UL@1@MB7D',9@,%,7&\H%.-:9*4V"&M3<_>7I.BMOM.'_QP2>PJX&4NX3Y"
    24 ML'!TM5#(2G2T7"@D=GQ2:-$GSZX%7-[\[!4O$8DVRUL$4;1UDXW"GCU[>MX3
    25 M/[SC9]DC1,E31[+K:.]<#`=LXYC)1)@=+X)(A[Q.#7LH?.+W(K5=QQ>ID>^H
    26 4/0$LR'4.CI;"[?P'AY"J5^81````
     2M'XL("`_<*%(``VYC9F%C=&]R7VQE95]L+G)E<P"U5$UK@T`0O?LKAM"#(2KN
     3MAYHV9`]M*01"#TVAAU)"FC5!6$S0+37_OK,:/Y#0-"V]K#YGY[VWL^,LGN]G
     4MCP!`!,QGMS#0N?94\CZ86(MCA`K`C\LD3;0]G%CF"4)`NMZLUGJ7+54<+Y67
     5MQI]>KE>Z26-'PGI?CY4+:-X##[(DW<(33,%W[,*10T?NV[VA`!EO(,-PNEZN
     6MU#9^SU8V<<BPW1,)R&-M:.RL\WDL8+]3!YAC+O&+0/(1#0LN@Q&/$%'W.D+$
     7MVH3K2DM-T?5#DN7Z)3XH>]Y2$A_K$>?Z\0YW@*T<,$'2A+&0:F*]DK<;"^GJ
     8MIZEPB6F+?52FQ@Z3S-CA+B$1`C<:%Q0C!N$:A(5T<2W369->E)@W6)8XZ.!:
     9MZQL/19]4NK3'6_1X*QQVCX'V:8B5Q3.@4S_"LO+(JFDOD>]K(]VOY?G?Y<]H
     10M5R6/?N`E^'<O1MLT4]5*V-9]<Q4>=_LC/.]*NJQG#(58U;:TTF)EVU+I!M18
     11M"*@\=8NUD\O$?E.%TS<P_N__\>2IZZ%`VVE'F%?.4S,L/W*[,UBXZ`9PN,&5
     12*]05/O5#WGP4`````
    2713`
    2814end
  • Tst/Long/ncfactor_lee_l.tst

    • Property mode changed from 100755 to 100644
    r1f41352 rcbfc2f  
    88setring(r);
    99poly L = 10x5d4+26x4d5+47x5d2-97x4d3;
    10 facFirstWeyl(L);
     10def l=facFirstWeyl(L);
     11testNCfac (l, L);
     12l;
    1113
    1214tst_status();
  • Tst/Long/ok_l.lst

    r1f41352 rcbfc2f  
    4646mre
    4747mre_nonhom
    48 ncfactor_tsai_l
     48ncfactor_lee_l
    4949paraplan
    5050pAdd0L_l
  • Tst/Manual/facFirstShift.res.gz.uu

    r1f41352 rcbfc2f  
    1 begin 644 facFirstShift.res.gz
    2 M'XL("(JNRU```V9A8T9I<G-T4VAI9G0N<F5S`)V1,6O#,!"%=_V*(V20$\=4
    3 M=M*4FF@H)1`H'>IN)0V.8\<"HP3=E:C_OK(3V\5#ATZG=^_=QTE*WI\WKP`@
    4 M)+QLGF!$2$&E]J,8W&FGM"+NQ:RN("44:;96!BDI54&!SB\!4DHLN4'"&T1G
    5 M+D@G<R5U=B3!*'V$-UC!G<^MCYY_./?^7,(A+\`X6V>[M#KF>Y-RX6)]9B$!
    6 M<ZHQW/QJWTLXGZIO*-TLQ\]P8J?6FV`?6`Z6YZ6;_A#;1^;,MM;OT.BPTQA.
    7 MKZVH;S5ZWFD[$ZR=^(LTQ+3D`2GZSTYV0,+NX@^R^<GZG[Z0"R\>LQ_"*J0^
    8 $]`$`````
     1begin 664 facFirstShift.res.gz
     2M'XL("%"R*5(``V9A8T9I<G-T4VAI9G0N<F5S`)V1,6O#,!"%=_V*(V20$]=4
     3M=M*4FFHHI1`('>IL)0V.8\<"HP3=E:K_OK(3V\%#ADZG=^_=AZ1+UJ_+=P`0
     4M$E;+%Q@14E"IW2@&=]HJK8A[,:LK2`E%FKTI@Y24JJ!`YS\!4DHLN4#""T1G
     5M+DA'<R9U=B3!*'V`#WB&>Y];'SU_?^K]F81]7H!QMLZV:77(=R;EPL7ZS%P"
     6MYE1CN+EJ/T@X':M?*-TLQZ]P8J?6FV`?6`PNSTLW_2DV3\R9;:W_H=%AI['1
     7M4:_#Z3DRZUKV3K!VXA:IG8P&\`$I^@_)#DC8/?Q1-INL]_2-7'CQF/T!<RK2
     8%H_0!````
    99`
    1010end
  • Tst/Manual/facFirstShift.stat

    r1f41352 rcbfc2f  
    1 1 >> tst_memory_0 :: 1355525762:3150:3-1-5:x86_64-Linux:snork:503528
    2 1 >> tst_memory_1 :: 1355525762:3150:3-1-5:x86_64-Linux:snork:2453504
    3 1 >> tst_memory_2 :: 1355525762:3150:3-1-5:x86_64-Linux:snork:2613248
    4 1 >> tst_timer_1 :: 1355525762:3150:3-1-5:x86_64-Linux:snork:49
     11 >> tst_memory_0 :: 1378464336:3.1.3.sw, 64 bit:spielwiese:x86_64-Linux:fifi.mathematik.uni-kl.de:512160
     21 >> tst_memory_1 :: 1378464336:3.1.3.sw, 64 bit:spielwiese:x86_64-Linux:fifi.mathematik.uni-kl.de:2441216
     31 >> tst_memory_2 :: 1378464336:3.1.3.sw, 64 bit:spielwiese:x86_64-Linux:fifi.mathematik.uni-kl.de:2513568
     41 >> tst_timer_1 :: 1378464336:3.1.3.sw, 64 bit:spielwiese:x86_64-Linux:fifi.mathematik.uni-kl.de:33
  • Tst/Short/ncfactor_example2_7FromMaster_s.res.gz.uu

    r1f41352 rcbfc2f  
    11begin 644 ncfactor_example2_7FromMaster_s.res.gz
    2 M'XL("'/OQ5```VYC9F%C=&]R7V5X86UP;&4R7S=&<F]M36%S=&5R7W,N<F5S
    3 M`%U1RVK#,!"\^RN6T(-D&1/939PV5(=2`@&WAZ300VF-8RG!X-A&4JGR]Y42
    4 MO^A!K'9G=D>:W;^_;-\`@#)(M\\PTTJ'57F8K;U]AT0,;#$KZU(CO/9<!,:@
    5 M+HYYH1N9"9.?VTI$6;*1S?DU5UK(3(6U^`V5SO4P)^X4^L9_,O<,AOLB!%G6
    6 M)]C!$\P#9`*.`]Z.W"4#+HX@+5P765Z=Q$'FB`84CYR$@1+:C4%R4EXQ:)OJ
    7 M`JGM189S(&`XH<0E9(%]@WV$D/$Y_HX(Q7Y'B&^$Q!'&80\,[%\VI53Z0UPJ
    8 ME%KLDWX]>A;KH_/VFD=#;B).#(_L(4M#;F@\16,RH:P,L?J])IV//E$:7E?C
    9 8;/Y1:'P8[7;6`=86N//^`#HO-X#J`0``
     2M'XL(")C=*%(``VYC9F%C=&]R7V5X86UP;&4R7S=&<F]M36%S=&5R7W,N<F5S
     3M`%U136L",1"][Z\8I(=DLRPFZU<KYM`60;`>M-!#:9?51%F(JR0IC?^^B:N[
     4M2P\AF7EOWDS>;-Y?%RL`H!R6BV?H66-356Y[TVAS0Q@'G\S+JK0(3Z-P`^=0
     5M[?;%SIYT+EUQ/"O)\O%<GXYOA;%2YR:MY&]J;&$;G>S6X5[XK\V`0_,>IJ#+
     6MZ@!KF$$_02X1.!'GECOB(.0>M(>K75ZH@]SJ`M&$XI8SYF"D#3)(=](3#N>3
     7MNL#2UR(G!!!P@E`2`C+$L<,Q0LC%`G\S0G%\(V0U81P(K=AC/8>:^1_-2VWL
     8MA[PHM&P9M._-D\:N7CP#D$H@@+2!O>MJ&GW2KZ?(R]WOL(YKS)K8,4&<8/Z0
     9MD2,UFG71C'0H$T?\R$T7UEI+L_2ZS;"9'X,ZDPYX%_!.PD/T!_.AS@P=`@``
    1010`
    1111end
  • Tst/Short/ncfactor_example2_7FromMaster_s.tst

    r1f41352 rcbfc2f  
    77setring(r);
    88poly L = (xdd + xd+1+ (xd+5)*x)*(((x*d)^2+1)*d + xd+3+ (xd+7)*x);
    9 facFirstWeyl(L);
     9def l=facFirstWeyl(L);
     10testNCfac (l, L);
     11l;
    1012
    1113tst_status();
  • Tst/Short/ncfactor_example_all_procedures_s.res.gz.uu

    r1f41352 rcbfc2f  
    1 begin 644 ncfactor_example_all_procedures_s.res.gz
    2 M'XL(",KCQ5```VYC9F%C=&]R7V5X86UP;&5?86QL7W!R;V-E9'5R97-?<RYR
    3 M97,`K5/M:X)`&/]^?\5#[,-"M/3408&PEP9!BX:##<80JVL)EN&=[/SO=Y?=
    4 MZ21:&R%X/&^_W_,:OCR,IP!@!S`9WT&'46:ER;PS1.'!X@0@E%&R3=AU=XCD
    5 M"T$`V\4J7K`LCPB/-[N41'&:1KL\6Y!ED1,:46M+OBS*8J:1\(%#A;:(W(I(
    6 M6259KP<2$H3F,<DI>R5E"JL\VX`(A28.&KW=/LTFHP%ZMS\&2,"I5Q:WEQTM
    7 M\[V,:[ETC,K'K75"TZ8/U\F*78"?*KHZ!=JF-VVD(DXAM6&.%"*1\']RXBTD
    8 MVFQ(6,S/F4;=1$8HF]X+G]]#;-07GTJVKQO1UX68W!4SX[C$IBO^AL^=TC$Q
    9 M=XP;7FK*=;;)/M7PGO^R/'7SN;?T#%\3[T6.E]AP3]#(8[C$GE;<K:DT,CAC
    10 C0YKN1X!\?7Y>=7[R8@LJCT\9_!\&NSN$*_0-,;3#@S<$````
     1begin 664 ncfactor_example_all_procedures_s.res.gz
     2M'XL("#VR*5(``VYC9F%C=&]R7V5X86UP;&5?86QL7W!R;V-E9'5R97-?<RYR
     3M97,`K9-M:\(P$,??YU,<LA>34K5-VX%"80\.!">.#C88HU2-LU"M-)&EWWZ)
     4M-6D7Q+DAA8:[R_U_R5TN>GD830#`"6$\NH,6HZR3I;/6`$6'B!N"<,;I)F77
     5M[0&2*X0A;.;+9,[R(B8\66\S$B=9%F^+?$X6NX+0F'8VY*M#6<*T$CXP5*H!
     6M\BJ0BDI8MPM2$H3G,2TH>R5E!LLB7X-(A:8.&K[=/DW'PSYZ=S[Z2,BI55YN
     7M;[O:YGL;UW;I6M4>K_8)CXF/5NF278!/#3X]@K<=I#).*:E,;(@;2O@_2MQ0
     8MHLV"1+O9.=VHB\@(99-[L>?W%`?UQ*<.V].%Z.F+V-P3/>.XQ+8G_E;`W=*U
     9M,7>M&UYJY"I?YY^J><]_>3QU\;F_\*U`@_<FQPML>2<P<A@N\4XKMM&5Q@G.
     10D>"'-[4>$`CU^?C5^<F)W5`Z?"@0_`DY[`%?H&R',((\W!```
    1111`
    1212end
  • Tst/Short/ncfactor_example_all_procedures_s.stat

    r1f41352 rcbfc2f  
    1 1 >> tst_memory_0 :: 1355146179:3150:3-1-5:ix86-Linux:mamawutz:524412
    2 1 >> tst_memory_1 :: 1355146179:3150:3-1-5:ix86-Linux:mamawutz:2453504
    3 1 >> tst_memory_2 :: 1355146179:3150:3-1-5:ix86-Linux:mamawutz:2552468
    4 1 >> tst_timer :: 1355146179:3150:3-1-5:ix86-Linux:mamawutz:675
    5 2 >> tst_memory_0 :: 1355146179:3150:3-1-5:ix86-Linux:mamawutz:525028
    6 2 >> tst_memory_1 :: 1355146179:3150:3-1-5:ix86-Linux:mamawutz:2453504
    7 2 >> tst_memory_2 :: 1355146179:3150:3-1-5:ix86-Linux:mamawutz:2552468
    8 2 >> tst_timer_1 :: 1355146179:3150:3-1-5:ix86-Linux:mamawutz:676
     11 >> tst_memory_0 :: 1378464317:3.1.3.sw, 64 bit:spielwiese:x86_64-Linux:fifi.mathematik.uni-kl.de:571856
     21 >> tst_memory_1 :: 1378464317:3.1.3.sw, 64 bit:spielwiese:x86_64-Linux:fifi.mathematik.uni-kl.de:2461696
     31 >> tst_memory_2 :: 1378464317:3.1.3.sw, 64 bit:spielwiese:x86_64-Linux:fifi.mathematik.uni-kl.de:2600960
     41 >> tst_timer :: 1378464317:3.1.3.sw, 64 bit:spielwiese:x86_64-Linux:fifi.mathematik.uni-kl.de:119
     52 >> tst_memory_0 :: 1378464317:3.1.3.sw, 64 bit:spielwiese:x86_64-Linux:fifi.mathematik.uni-kl.de:572584
     62 >> tst_memory_1 :: 1378464317:3.1.3.sw, 64 bit:spielwiese:x86_64-Linux:fifi.mathematik.uni-kl.de:2461696
     72 >> tst_memory_2 :: 1378464317:3.1.3.sw, 64 bit:spielwiese:x86_64-Linux:fifi.mathematik.uni-kl.de:2600960
     82 >> tst_timer_1 :: 1378464317:3.1.3.sw, 64 bit:spielwiese:x86_64-Linux:fifi.mathematik.uni-kl.de:119
  • Tst/Short/ncfactor_inhomog_s.res.gz.uu

    r1f41352 rcbfc2f  
    11begin 644 ncfactor_inhomog_s.res.gz
    2 M'XL(",SCQ5```VYC9F%C=&]R7VEN:&]M;V=?<RYR97,`M5#+:L,P$+S[*Y;0
    3 M@VP9$TEN^@C5H91"H/30!'HHJ7$<QQ:X=I!4*OU]92=^M-!C3[N:F1T-L]X\
    4 MK)X!@'!X6MW#3"L=56(W6WKK,T,Y.#`1M=#(7WKM!,ZAS@YIIAOIB++Y:(I$
    5 M177^%2F=ZN&4G4U[[2_GF,.P7T8@15W`"]S!/$0FM'ZX/X[:!8=]?@#IZ#I+
    6 MTJK(=S)%)"3^J+GBH'+=VB`Y@:\Y')O*0NEND7EGV&#B!VZ+L0T,IA/I#0>7
    7 M]%%(I5]S6Z'2<6]D>^LYKI]M6=V;#F_3>78@&\$8&XM9[TWFIQ[;@CX5&C\E
    8 EI,]'3P%I8+%U`2TV@9WHZ#^&8W^%BW\0KFVX^`8P@!Z_,P(`````
     2M'XL(".3=*%(``VYC9F%C=&]R7VEN:&]M;V=?<RYR97,`C5'+:L,P$+S[*Y;0
     3M@VP9$\G.HS71H2V%0,FA*?106N,X3F)0[6"I5/K[RHY?22CT).W.:'9GM'Y]
     4M7*X`@#!X7M[#2`KI\6PS"JUU@U`&IAEE>2:1'5K5"8Q!GNSB1!:E`0[%5[&/
     5MA)>G/YZ0L>R>^HUHR[U0#AAT]XD'99;OX046,':1<K7M;H\]=\I@F^Z@-'">
     6M1#'?IYLR1L0E=L^9,1"IK&10.6C/&1P+KN%@WB+UZ6.%B>V86X"UHS`=4&]/
     7M4_C"[/N4E4*^I9JC0\\@8Y-&*N3JP3``<1<JD'2PB9&'UCOYN+.,7'M6^=8U
     8M[6I5KU$W_;X98*6QWZDUT5>9?@LTV,)O+=&3)^IHK(TGC96C!SR3\*67@5TR
     9JN3)#S]Q,_^V&7GG1=1WTE(8Q&3#:.;._?,[/`//7<&/]`J4=PT.R`@``
    910`
    1011end
  • Tst/Short/ncfactor_inhomog_s.stat

    r1f41352 rcbfc2f  
    1 1 >> tst_memory_0 :: 1355146179:3150:3-1-5:ix86-Linux:mamawutz:518968
    2 1 >> tst_memory_1 :: 1355146179:3150:3-1-5:ix86-Linux:mamawutz:2387968
    3 1 >> tst_memory_2 :: 1355146179:3150:3-1-5:ix86-Linux:mamawutz:2527232
    4 1 >> tst_timer :: 1355146179:3150:3-1-5:ix86-Linux:mamawutz:125
    5 2 >> tst_memory_0 :: 1355146179:3150:3-1-5:ix86-Linux:mamawutz:637872
    6 2 >> tst_memory_1 :: 1355146179:3150:3-1-5:ix86-Linux:mamawutz:2387968
    7 2 >> tst_memory_2 :: 1355146179:3150:3-1-5:ix86-Linux:mamawutz:2527232
    8 2 >> tst_timer :: 1355146179:3150:3-1-5:ix86-Linux:mamawutz:113
    9 3 >> tst_memory_0 :: 1355146179:3150:3-1-5:ix86-Linux:mamawutz:638000
    10 3 >> tst_memory_1 :: 1355146179:3150:3-1-5:ix86-Linux:mamawutz:2387968
    11 3 >> tst_memory_2 :: 1355146179:3150:3-1-5:ix86-Linux:mamawutz:2527232
    12 3 >> tst_timer_1 :: 1355146179:3150:3-1-5:ix86-Linux:mamawutz:239
     11 >> tst_memory_0 :: 1378409956:3170:3-1-7:ix86-Linux:mamawutz:500816
     21 >> tst_memory_1 :: 1378409956:3170:3-1-7:ix86-Linux:mamawutz:2363392
     31 >> tst_memory_2 :: 1378409956:3170:3-1-7:ix86-Linux:mamawutz:2502656
     41 >> tst_timer :: 1378409956:3170:3-1-7:ix86-Linux:mamawutz:132
     52 >> tst_memory_0 :: 1378409956:3170:3-1-7:ix86-Linux:mamawutz:505272
     62 >> tst_memory_1 :: 1378409956:3170:3-1-7:ix86-Linux:mamawutz:2363392
     72 >> tst_memory_2 :: 1378409956:3170:3-1-7:ix86-Linux:mamawutz:2502656
     82 >> tst_timer :: 1378409956:3170:3-1-7:ix86-Linux:mamawutz:85
     93 >> tst_memory_0 :: 1378409956:3170:3-1-7:ix86-Linux:mamawutz:505400
     103 >> tst_memory_1 :: 1378409956:3170:3-1-7:ix86-Linux:mamawutz:2363392
     113 >> tst_memory_2 :: 1378409956:3170:3-1-7:ix86-Linux:mamawutz:2502656
     123 >> tst_timer_1 :: 1378409956:3170:3-1-7:ix86-Linux:mamawutz:219
  • Tst/Short/ncfactor_inhomog_s.tst

    r1f41352 rcbfc2f  
    77setring(r);
    88poly h = (x^3+x+1)*(x^4+y*x+2);
    9 facFirstWeyl(h);
     9def l=facFirstWeyl(h);
     10testNCfac (l, h);
     11l;
    1012tst_status();
    1113poly h2 = (x^2*y+y)*(y+x*y);
    12 facFirstWeyl(h);
     14l=facFirstWeyl(h2);
     15testNCfac (l, h2);
     16l;
    1317tst_status();
    1418tst_status(1); $
  • Tst/Short/ncfactor_koepf_s.res.gz.uu

    r1f41352 rcbfc2f  
    11begin 644 ncfactor_koepf_s.res.gz
    2 M'XL("'?OQ5```VYC9F%C=&]R7VMO97!F7W,N<F5S`+5536O"0!"]YU<,TL/F
    3 M$R>)7Y7NH92"(#W40@^EANA&"0U1DBV-_[Z;F&2+IB@:3[OS9N>]W9UA9O;V
    4 M-'D!`*0PG3Q"AZ?<BL)%9ZS,2H]-08!>&(><J&,E7X%2B)<K?\DWB?>U";8K
    5 M+[7BX,=*N<_K0*>DK$X>\+H4ZGW/@B2,U_`*#]`U2&8PU6!;>;9/@04K2(0[
    6 M7GI^M`X6B4_00%6>&5!(`Y[3D.0//*2PW40[F(I8DLU=$U4MT]C<U@GJ`TT@
    7 MJL;TH=@X,FA$0=SY.4Q2_A[L(C(5A!_X>:\(7[7FGU;8=FVSPG9J.V.F74"N
    8 MA/1]4$\B=@GU)62B4M%>*6>>(R>0BN9*.?OX><VO<V\E9S:^KG>CW!VKY5>J
    9 M[-9S=_R7A=S@I)R@QP-%=G%E#EN1.[LR1ZW(G5V9V+V57G-IXNF^<EGV_JE-
    10 L/-U8+DM?<W&6+16[LMTC6L5(R:?%=TIDL\9RUI0.T=WA3OD%_4G)*:(&````
     2M'XL("%[>*%(``VYC9F%C=&]R7VMO97!F7W,N<F5S`+552VO"0!"^YU<,TL/F
     3MB;N)KXI[:$M!$`^UT$.I(;I10I<HR9;&?]]--%G1%,7':7>^>7R[,\/,Y/UE
     4M.`8`3&$T?(*&2(7#HUFCKTUV&D)!@GX41P+I?2T_@5*(YXM@+E:)_[T*UPL_
     5M=>+PUTE%("I'=Q>RM#R(ZU&H[BT'DBA>PAL,H&FAS&*ZQ=;*MDV!A0M(I#J>
     6M^P%?AK,D0-C"NK+I4$A#D8=!R1[<I;!>\0V,I"_*IIZ-=2,SV)28")L=0R*Z
     7MP<RNO+C*J;?EXP/Y\M<H2<5'N.%HI,+BILQ*F(KQL[0`Q"W(E;A2RW3ROO:)
     8MOQXU&:X\\SP7,JED5LAN)6?,)@7D*<C<.K440G906T$VULJP5]+9Y]!)I`QS
     9M)1TY_E[][[Q[T=FUOVO=J7;';/F32OGFM3O.94'7.4DGP^,#1G9Q9W9O0G=V
     10M9_9N0G=V9^+FO?CJ6Q.?GBN75>^?WL2G!\MEY:MOSG*($K4AL.L46RA?,#\I
     114VAO$'MU7R(4`#]H?T+HH@=4&````
    1112`
    1213end
  • Tst/Short/ncfactor_koepf_s.tst

    r1f41352 rcbfc2f  
    77setring(r);
    88poly L = (x^4-1)*x*d^2+(1+7*x^4)*d+8*x^3;
    9 facFirstWeyl(L);
     9def l=facFirstWeyl(L);
     10testNCfac (l, L);
     11l;
    1012
    1113tst_status();
  • Tst/Short/ncfactor_tsai_s.res.gz.uu

    r1f41352 rcbfc2f  
    11begin 644 ncfactor_tsai_s.res.gz
    2 M'XL("(?OQ5```VYC9F%C=&]R7W1S86E?<RYR97,`?9++:L,P$$7W_HHA="%7
    3 MEHD><1^A6I12"(0NFD(7I3%.Y`2#<8*M4N7O.Q)V'%KH1C.:<W7%:+1Z>UJ\
    4 M``#7L%P\PL1V-JVKS60>K7HB-&`QKYK*DG@>^0A:0[/=%5M[:'/;%57>I4WY
    5 MG7:VL.=SLG<<A+]LE89S/DNAK9H]O,(#3!/B$A,GYCAJ,PVFW$&+N-GF1;TO
    6 M-VU!>,+C47.CH2NMMR'M1?E6P_%0GV")9XE;9U1<N[5B$E<17YNU8$1A/F,J
    7 MU+G'(@2D0(%D8UVR+%"!6JQ<W'*G`9M\KMK.OI>GFBR1??#/^PC9$/TCA[TX
    8 M[YTRU$G#E)-4.F$8+I@8ECDF@U:.6L1(A*,J&BS^MV;>6O;6-'.">6OI*!=_
    9 FO6E`C`\M\>DX'\[3\`7\>+\Z,O;-^[_1`QP'7$4_Y/(Y[%("````
     2M'XL("`O>*%(``VYC9F%C=&]R7W1S86E?<RYR97,`?9++:L,P$$7W_HHA="%7
     3MEHD><1\A6K2E$`A9-(4N2F.<R`D&XP1+I<K?=^PFMFFA&\UHSM6U-:/5Z]-\
     4M"0!<PV+^`"-G75P6F]$T6)V)T(#%M*@*1\)IT$30&JKM+MNZ0YTZFQ6IC:O\
     5M*[8N<]TY>7:\"'_9*@U=/HFA+JH]O,`,QA'QD0DC<^RUB0:3[Z!&7&W3K-SG
     6MFSHC/.)AK[G18'/7V)!Z4+[5<#R4)UC@6>+7"177?JV8Q%6$UV8M&%&83YAJ
     7MZ[S!H@U(@0))^KID24L%:K$R^,K=SP^6,[SJ<U%;]Y:?2K+H%7R,7<RM6SZB
     8M`D@900-YA[']Y31XYQ_W`=I=8C.7=B^ZO5>&>FF8\I)*+PS#!1/#$L]DJY6]
     9M%C$2X:D*+A;_6[/&6IZM:>(%:ZREIUS\]:8M8OTE1#]2+N/VU30OXM.202.4
     10/'@*<(%P%WT9(V`>%`@``
    1011`
    1112end
  • Tst/Short/ncfactor_tsai_s.tst

    r1f41352 rcbfc2f  
    77setring(r);
    88poly L = (x^6+2*x^4-3*x^2)*d^2-(4*x^5-4*x^4-12*x^2-12*x)*d + (6*x^4-12*x^3-6*x^2-24*x-12);
    9 facFirstWeyl(L);
     9def l=facFirstWeyl(L);
     10testNCfac (l, L);
     11l;
    1012
    1113tst_status();
  • Tst/Short/ok_s.lst

    r1f41352 rcbfc2f  
    209209; mpsr_s
    210210mres_s
     211ncfactor_example2_7FromMaster_s
    211212ncfactor_example_all_procedures_s
    212213ncfactor_inhomog_s
     214ncfactor_koepf_s
     215ncfactor_koepfShift_s
     216ncfactor_tsai_s
    213217normal
    214218parallel_s
Note: See TracChangeset for help on using the changeset viewer.