Changeset ccb904 in git


Ignore:
Timestamp:
Apr 29, 2013, 11:39:37 AM (10 years ago)
Author:
Hans Schoenemann <hannes@…>
Branches:
(u'jengelh-datetime', 'ceac47cbc86fe4a15902392bdbb9bd2ae0ea02c6')(u'spielwiese', 'a800fe4b3e9d37a38c5a10cc0ae9dfa0c15a4ee6')
Children:
9f9dd43ae70c6fefcee2255f30e3cb98f9c50ace
Parents:
2e7132d3e6a6b5db4b3d0b22eeb095b9a3e57e7510c89cd820352b07e7cbd9b4472ae6a32d0281f1
Message:
Merge pull request #322 from mschulze/spielwiese

Spielwiese - debian package stuff
Files:
3 added
4 edited
1 moved

Legend:

Unmodified
Added
Removed
  • debian/control

    r2e7132 rccb904  
    88Package: singular
    99Architecture: any
     10Depends: singular-bin, singular-common
     11Description: computer algebra system for polynomial computations (meta package)
     12 Singular is a computer algebra system for polynomial computations with
     13 emphasis on the special needs of commutative algebra, algebraic geometry,
     14 and singularity theory.
     15 .
     16 This meta package provides a complete installation for users.
     17
     18Package: singular-bin
     19Architecture: any
    1020Depends: ${shlibs:Depends}, ${misc:Depends}
    11 Description: computer algebra system for polynomial computations
    12  Singular is a computer algebra system for polynomial computations with emphasis on the special needs of commutative algebra, algebraic geometry, and singularity theory.
    13  Singular's main computational objects are ideals and modules over a large variety of baserings. The baserings are polynomial rings or localizations thereof over a field (e.g., finite fields, the rationals, floats, algebraic extensions, transcendental extensions) or quotient rings with respect to an ideal.
    14  Singular features one of the fastest and most general implementations of various algorithms for computing Groebner resp. standard bases. The implementation includes Buchberger's algorithm (if the ordering is a wellordering) and Mora's algorithm (if the ordering is a tangent cone ordering) as special cases. Furthermore, it provides polynomial factorizations, resultant, characteristic set and gcd computations, syzygy and free-resolution computations, and many more related functionalities.
    15  Based on an easy-to-use interactive shell and a C-like programming language, Singular's internal functionality is augmented and user-extendible by libraries written in the Singular programming language. A general and efficient implementation of communication links allows Singular to make its functionality available to other programs.
     21Description: computer algebra system for polynomial computations (binary files)
     22 Singular is a computer algebra system for polynomial computations with
     23 emphasis on the special needs of commutative algebra, algebraic geometry,
     24 and singularity theory.
     25 .
     26 This package contains binary files.
    1627
     28Package: singular-common
     29Architecture: all
     30Depends: ${shlibs:Depends}, ${misc:Depends}
     31Description: computer algebra system for polynomial computations (common files)
     32 Singular is a computer algebra system for polynomial computations with
     33 emphasis on the special needs of commutative algebra, algebraic geometry,
     34 and singularity theory.
     35 .
     36 This package contains architecture-independent files.
     37
     38Package: singular-dev
     39Architecture: all
     40Depends: ${shlibs:Depends}, ${misc:Depends}
     41Description: computer algebra system for polynomial computations (development)
     42 Singular is a computer algebra system for polynomial computations with
     43 emphasis on the special needs of commutative algebra, algebraic geometry,
     44 and singularity theory.
     45 .
     46 This package contains develoment files.
     47
  • debian/copyright

    r2e7132 rccb904  
    88
    99License: GPL-2
    10 The full text of the GPL is distributed in
    11 /usr/share/common-licenses/GPL-2 on Debian systems.
     10The full text of the GPL is distributed in /usr/share/common-licenses/GPL-2
     11on Debian systems.
    1212
    1313License: GL-3
    14 The full text of the GPL is distributed in
    15 /usr/share/common-licenses/GPL-3 on Debian systems.
     14The full text of the GPL is distributed in /usr/share/common-licenses/GPL-3
     15on Debian systems.
    1616
  • debian/rules

    r2e7132 rccb904  
    11#!/usr/bin/make -f
    2 
    3 CPPFLAGS = $(shell dpkg-buildflags --get CPPFLAGS)
    42
    53%:
     
    119override_dh_auto_install:
    1210        dh_auto_install
    13         install debian/icons/Singular.desktop debian/singular/usr/share/applications
    14         install debian/icons/Singular-manual.desktop debian/singular/usr/share/applications
    15         install debian/icons/Singular.png debian/singular/usr/share/icons
     11        install debian/icons/Singular.desktop debian/singular-common/usr/share/applications
     12        install debian/icons/Singular-manual.desktop debian/singular-common/usr/share/applications
     13        install debian/icons/Singular.png debian/singular-common/usr/share/icons
    1614
  • libpolys/polys/ext_fields/transext.cc

    r10c89cd rccb904  
    183183      number n=pGetCoeff(p);
    184184      n_Test(n,ntCoeffs);
     185      if ((!(SR_HDL(n) & SR_INT))&&(n->s==0))
     186      /* not normalized, just do for the following test*/
     187      {
     188        n_Normalize(pGetCoeff(p),ntCoeffs);
     189        n=pGetCoeff(p);
     190      }
    185191      if (!(SR_HDL(n) & SR_INT))
    186192      {
     
    988994       then both the numerator and the denominator will be divided by the
    989995       GCD of the a_alpha's and the c_beta's (if this GCD is != 1),
    990    (3) if 'a' is - e.g. after having performed steps (1) and (2) - of the
    991        form
    992           (sum_alpha a_alpha * t^alpha)
    993           -----------------------------
    994                         c
    995        with integers a_alpha, and c != 1, then 'a' will be replaced by
    996        (sum_alpha a_alpha/c * t^alpha);
    997996   this procedure does not alter COM(f) (this has to be done by the
    998997   calling procedure);
     
    10041003  assume(!DENIS1(f));
    10051004
    1006   if (!p_IsConstant(DEN(f), ntRing))
    10071005  { /* step (1); see documentation of this procedure above */
    10081006    p_Normalize(NUM(f), ntRing);
     
    10381036    }
    10391037    n_Delete(&lcmOfDenominators, ntCoeffs);
    1040     if (!p_IsConstant(DEN(f), ntRing))
     1038    if (DEN(f)!=NULL)
    10411039    { /* step (2); see documentation of this procedure above */
    10421040      p = NUM(f);
     
    10721070      n_Delete(&gcdOfCoefficients, ntCoeffs);
    10731071    }
    1074   }
    1075   if (p_IsConstant(DEN(f), ntRing) &&
    1076       (!n_IsOne(p_GetCoeff(DEN(f), ntRing), ntCoeffs)))
    1077   { /* step (3); see documentation of this procedure above */
    1078     number inverseOfDen = n_Invers(p_GetCoeff(DEN(f), ntRing), ntCoeffs);
    1079     NUM(f) = p_Mult_nn(NUM(f), inverseOfDen, ntRing);
    1080     n_Delete(&inverseOfDen, ntCoeffs);
    1081     p_Delete(&DEN(f), ntRing);
    1082     DEN(f) = NULL;
    10831072  }
    10841073
Note: See TracChangeset for help on using the changeset viewer.