Changeset d866a4 in git
 Timestamp:
 Jul 2, 1999, 2:47:47 PM (24 years ago)
 Branches:
 (u'jengelhdatetime', 'ceac47cbc86fe4a15902392bdbb9bd2ae0ea02c6')(u'spielwiese', 'a800fe4b3e9d37a38c5a10cc0ae9dfa0c15a4ee6')
 Children:
 e8d7926ff7b6049314794666722f0a7b2fae3ed8
 Parents:
 26294237fc0acd0703018c193fb31c98db3377c9
 File:

 1 edited
Legend:
 Unmodified
 Added
 Removed

Singular/LIB/solve.lib
r2629423 rd866a4 1 1 /////////////////////////////////////////////////////////////////////////////// 2 2 3 version="$Id: solve.lib,v 1. 4 19990702 11:58:07 greuel Exp $";3 version="$Id: solve.lib,v 1.5 19990702 12:47:47 greuel Exp $"; 4 4 info=" 5 5 LIBRARY: solve.lib PROCEDURES TO SOLVE POLYNOMIAL SYSTEMS … … 135 135 "EXAMPLE:";echo=2; 136 136 // Find all roots of an univariate polynomial using Laguerre's method: 137 ring rs1= 0,(x 1,x2),lp;138 poly f = 15 *x1^5 + x1^3 + x1^2  10;137 ring rs1= 0,(x,y),lp; 138 poly f = 15x5 + x3 + x2  10; 139 139 laguerre_solve(f); 140 140 … … 145 145 pause; 146 146 // Now with complex coefficients, precision is 20 digits: 147 ring rsc= (real,20,I),(x1,x2),lp; 148 poly f = (15+I*5)*x1^5 + (2+I*2)*x1^3 + x1^2  10*I; 149 laguerre_solve(f); 147 ring rsc= (real,20,I),x,lp; 148 poly f = (15+I*5)*x^5 + (0.25+I*2)*x^3 + x2  10*I; 149 list l = laguerre_solve(f); 150 l; 150 151 } 151 152 /////////////////////////////////////////////////////////////////////////////// … … 235 236 "EXAMPLE:"; echo=2; 236 237 ring r1 = 0,(x),lp; 237 // First example: 238 // deg(f) = 4, 238 // determine f with deg(f) = 4 and 239 239 // v = values of f at points 3^0, 3^1, 3^2, 3^3, 3^4 240 240 ideal v=16,0,11376,1046880,85949136; … … 242 242 243 243 ring r2 = 0,(x,y),dp; 244 // Second example:245 // deg(f) = 3244 // determine f with deg(f) = 3 and 245 // v = values of f at 16 points (2,3)^0=(1,1),...,(2,3)^15=(2^15,3^15) 246 246 // valuation point (2,3) 247 // v = values at 16 points248 247 ideal p = 2,3; 249 248 ideal v= 1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16;
Note: See TracChangeset
for help on using the changeset viewer.