Changeset da408f in git for Singular/mpr_inout.h
- Timestamp:
- Jul 8, 1999, 12:18:13 PM (24 years ago)
- Branches:
- (u'spielwiese', '8e0ad00ce244dfd0756200662572aef8402f13d5')
- Children:
- b719a30005f8bcbcca9d638b7908dda038ffee56
- Parents:
- 4deddb979be065737d63e926fc05f264a6b1078a
- File:
-
- 1 edited
Legend:
- Unmodified
- Added
- Removed
-
Singular/mpr_inout.h
r4deddb rda408f 5 5 ****************************************/ 6 6 7 /* $Id: mpr_inout.h,v 1. 3 1999-06-29 09:03:45wenk Exp $ */7 /* $Id: mpr_inout.h,v 1.4 1999-07-08 10:18:13 wenk Exp $ */ 8 8 9 9 /* … … 22 22 * dense homogeneous polynoms) or MPR_SPARSE, which uses Sparse Resultant 23 23 * (Gelfand, Kapranov, Zelevinsky). 24 * If interpolate == true then the determinant of the u-resultant will be 25 * numerically interpolatet using a Vandermonde System. 26 * Otherwise, the Sparse Bareiss will be used (faster!). 24 * Arguments 4: ideal i, int k, int l, int m 25 * k=0: use sparse resultant matrix of Gelfand, Kapranov and Zelevinsky 26 * k=1: use resultant matrix of Macaulay (k=0 is default) 27 * l>0: defines precision of fractional part if ground field is Q 28 * m=0,1,2: number of iterations for approximation of roots (default=2) 27 29 * Returns a list containing the roots of the system. 28 30 */ 29 BOOLEAN nuUResSolve( leftv res, leftv arg 1, leftv arg2, leftv arg3);31 BOOLEAN nuUResSolve( leftv res, leftv args ); 30 32 31 /** build resultant matrix from ideal 32 * Make sure that IDELEMS(ideal) == pVariables+1. 33 /** returns module representing the multipolynomial resultant matrix 34 * Arguments 2: ideal i, int k 35 * k=0: use sparse resultant matrix of Gelfand, Kapranov and Zelevinsky 36 * k=1: use resultant matrix of Macaulay (k=0 is default) 33 37 */ 34 38 BOOLEAN nuMPResMat( leftv res, leftv arg1, leftv arg2 ); … … 37 41 * Determines the roots of an univariate polynomial using Laguerres' 38 42 * root-solver. Good for polynomials with low and middle degree (<40). 39 * Returns a list containing the roots of the polynomial. 43 * Arguments 3: poly arg1 , int arg2 , int arg3 44 * arg2>0: defines precision of fractional part if ground field is Q 45 * arg3: number of iterations for approximation of roots (default=2) 46 * Returns a list of all (complex) roots of the polynomial arg1 40 47 */ 41 BOOLEAN nuLagSolve( leftv res, leftv arg1, leftv arg2 );48 BOOLEAN nuLagSolve( leftv res, leftv arg1, leftv arg2, leftv arg3 ); 42 49 43 50 /** 51 * COMPUTE: polynomial p with values given by v at points p1,..,pN derived 52 * from p; more precisely: consider p as point in K^n and v as N elements in K, 53 * let p1,..,pN be the points in K^n obtained by evaluating all monomials 54 * of degree 0,1,...,N at p in lexicographical order, then the procedure 55 * computes the polynomial f satisfying f(pi) = v[i] 56 * RETURN: polynomial f of degree d 44 57 */ 45 58 BOOLEAN nuVanderSys( leftv res, leftv arg1, leftv arg2, leftv arg3 );
Note: See TracChangeset
for help on using the changeset viewer.