Changeset da408f in git for Singular/mpr_inout.h


Ignore:
Timestamp:
Jul 8, 1999, 12:18:13 PM (24 years ago)
Author:
Moritz Wenk <wenk@…>
Branches:
(u'spielwiese', '8e0ad00ce244dfd0756200662572aef8402f13d5')
Children:
b719a30005f8bcbcca9d638b7908dda038ffee56
Parents:
4deddb979be065737d63e926fc05f264a6b1078a
Message:
*wenk: changed uressolve CMD_3 -> CMD_M (4)
	       laguerre  CMD2_ -> CMD_3
       removed "setFloatDigits" in extra.cc
       fixed output (2.2e33 -> 2.2e+33)
       adapted solve.lib to uressolve, laguerre, extended examples


git-svn-id: file:///usr/local/Singular/svn/trunk@3247 2c84dea3-7e68-4137-9b89-c4e89433aadc
File:
1 edited

Legend:

Unmodified
Added
Removed
  • Singular/mpr_inout.h

    r4deddb rda408f  
    55****************************************/
    66
    7 /* $Id: mpr_inout.h,v 1.3 1999-06-29 09:03:45 wenk Exp $ */
     7/* $Id: mpr_inout.h,v 1.4 1999-07-08 10:18:13 wenk Exp $ */
    88
    99/*
     
    2222 * dense homogeneous polynoms) or MPR_SPARSE, which uses Sparse Resultant
    2323 * (Gelfand, Kapranov, Zelevinsky).
    24  * If interpolate == true then the determinant of the u-resultant will be
    25  * numerically interpolatet using a Vandermonde System.
    26  * Otherwise, the Sparse Bareiss will be used (faster!).
     24 * Arguments 4: ideal i, int k, int l, int m
     25 *   k=0: use sparse resultant matrix of Gelfand, Kapranov and Zelevinsky
     26 *   k=1: use resultant matrix of Macaulay (k=0 is default)
     27 *   l>0: defines precision of fractional part if ground field is Q
     28 *   m=0,1,2: number of iterations for approximation of roots (default=2)
    2729 * Returns a list containing the roots of the system.
    2830 */
    29 BOOLEAN nuUResSolve( leftv res, leftv arg1, leftv arg2, leftv arg3 );
     31BOOLEAN nuUResSolve( leftv res, leftv args );
    3032
    31 /** build resultant matrix from ideal
    32  * Make sure that IDELEMS(ideal) == pVariables+1.
     33/** returns module representing the multipolynomial resultant matrix
     34 * Arguments 2: ideal i, int k
     35 *   k=0: use sparse resultant matrix of Gelfand, Kapranov and Zelevinsky
     36 *   k=1: use resultant matrix of Macaulay (k=0 is default)
    3337 */
    3438BOOLEAN nuMPResMat( leftv res, leftv arg1, leftv arg2 );
     
    3741 * Determines the roots of an univariate polynomial using Laguerres'
    3842 * root-solver. Good for polynomials with low and middle degree (<40).
    39  * Returns a list containing the roots of the polynomial.
     43 * Arguments 3: poly arg1 , int arg2 , int arg3
     44 *  arg2>0: defines precision of fractional part if ground field is Q
     45 *  arg3: number of iterations for approximation of roots (default=2)
     46 * Returns a list of all (complex) roots of the polynomial arg1
    4047 */
    41 BOOLEAN nuLagSolve( leftv res, leftv arg1, leftv arg2 );
     48BOOLEAN nuLagSolve( leftv res, leftv arg1, leftv arg2, leftv arg3 );
    4249
    4350/**
     51 * COMPUTE: polynomial p with values given by v at points p1,..,pN derived
     52 * from p; more precisely: consider p as point in K^n and v as N elements in K,
     53 * let p1,..,pN be the points in K^n obtained by evaluating all monomials
     54 * of degree 0,1,...,N at p in lexicographical order, then the procedure
     55 * computes the polynomial f satisfying f(pi) = v[i]
     56 * RETURN:  polynomial f of degree d
    4457 */
    4558BOOLEAN nuVanderSys( leftv res, leftv arg1, leftv arg2, leftv arg3 );
Note: See TracChangeset for help on using the changeset viewer.