Changeset de5dbc in git


Ignore:
Timestamp:
Aug 31, 2018, 2:57:22 PM (5 years ago)
Author:
Karim Abou Zeid <karim23697@…>
Branches:
(u'spielwiese', 'a719bcf0b8dbc648b128303a49777a094b57592c')
Children:
a83d208fed33c8c5dd5ae7c36fca503e8b225ee7
Parents:
cfce45f606f08b61ca799377f748c37069f669bf
Message:
Make libraries compatible with letterplace_kernel_multiplication
Location:
Singular/LIB
Files:
3 edited

Legend:

Unmodified
Added
Removed
  • Singular/LIB/fpadim.lib

    rcfce45f rde5dbc  
    936936  if (i > attrib(basering,"uptodeg")) {ERROR("polynomial exceeds degreebound");}
    937937  int j; poly p = 1;
    938   for (j = 1; j <= i; j++) {if (I[j] > 0) { p = lpMult(p,var(I[j]));}} //ignore zeroes, because they correspond to 1
     938  for (j = 1; j <= i; j++) {if (I[j] > 0) { p = p*var(I[j]);}} //ignore zeroes, because they correspond to 1
    939939  return(p);
    940940}
     
    11741174      k = 1; b = 1;
    11751175      q = V[j];
    1176       w = lpNF(lpMult(p,q),LG);
     1176      w = lpNF(p*q,LG);
    11771177      if (w <> 0)
    11781178      {
  • Singular/LIB/fpaprops.lib

    rcfce45f rde5dbc  
    11181118        if (subindex > 0) {
    11191119          s2[subindex] = lpNF(s2[subindex],G);
    1120           fis = lpMult(fis, s2[subindex]);
     1120          fis = fis * s2[subindex];
    11211121        } else {
    1122           fis = lpMult(fis, lpNF(iv2lp(varindex),G));
     1122          fis = fis * lpNF(iv2lp(varindex),G);
    11231123        }
    11241124        /*fis = lpNF(fis,G);*/
     
    13051305}
    13061306
     1307// TODO: use original ring attrib to create a new letterplace ring
    13071308// removes a variable from a letterplace ring (a bit of a hack)
    13081309static proc lpDelVar(int index) {
  • Singular/LIB/freegb.lib

    rcfce45f rde5dbc  
    2222freeGBasis(L, n);  computes two-sided Groebner basis of an ideal, encoded via list L, up to degree n
    2323
    24 lpMult(f,g);    letterplace multiplication of letterplace polynomials
    2524shiftPoly(p,i); compute the i-th shift of letterplace polynomial p
    26 lpPower(f,n);   natural power of a letterplace polynomial
    2725lieBracket(a,b[, N]);  compute Lie bracket ab-ba of two letterplace polynomials
    2826
     
    6361  example setLetterplaceAttributes;
    6462  /* secondary */
    65   example   lpMult;
    6663  example   shiftPoly;
    67   example   lpPower;
    6864  example   lieBracket;
    6965  example   lp2lstr;
     
    637633  L[3] = LR[3];
    638634  def @R = ring(L);
     635  @R = setLetterplaceAttributes(@R, D+1, nvars(save));
    639636  setring @R;
    640637  ideal I;
     
    686683  setring @R;
    687684  dbprint(ppl,"computing GB");
    688   ideal J = system("freegb",I,d,nvars(save));
     685  ideal J = system("freegb",I);
    689686  //  ideal J = slimgb(I);
    690687  dbprint(ppl,J);
    691688  // 4. skip shifted elts
     689  attrib(@R, "isLetterplaceRing", 0); // select1 doesn't want to work with letterplace enabled
    692690  ideal K = select1(J,1..s); // s = size(OrigNames)
    693691  dbprint(ppl,K);
     
    24632461  // alias ppLiebr;
    24642462  //if int N is given compute [a,[...[a,b]]]] left normed bracket
    2465   poly q;
    24662463  int N=1;
    24672464  if (size(#)>0)
     
    24732470  }
    24742471  if (N<=0) { return(q); }
    2475   while (b!=0)
    2476   {
    2477     q = q + pmLiebr(a,lead(b));
    2478     b = b - lead(b);
    2479   }
    2480   int i;
     2472  poly q = a*b - b*a;
    24812473  if (N >1)
    24822474  {
    2483     for(i=1; i<=N-1; i++)
     2475    for(int i=1; i<=N-1; i++)
    24842476    {
    24852477      q = lieBracket(a,q);
     
    24972489  lieBracket(a,b);
    24982490  lieBracket(x(1),y(1),2);
    2499 }
    2500 
    2501 static proc pmLiebr(poly a, poly b)
    2502 {
    2503   //  a poly, b mono
    2504   poly s;
    2505   while (a!=0)
    2506   {
    2507     s = s + mmLiebr(lead(a),lead(b));
    2508     a = a - lead(a);
    2509   }
    2510   return(s);
    25112491}
    25122492
     
    25642544  poly f = x(1)*z(2)*y(3) - 2*z(1)*y(2) + 3*x(1);
    25652545  lastBlock(f); // should be 3
    2566 }
    2567 
    2568 static proc mmLiebr(poly a, poly b)
    2569 {
    2570   // a,b, monomials
    2571   a = lead(a);
    2572   b = lead(b);
    2573   int sa = deg(a);
    2574   int sb = deg(b);
    2575   poly v = a*shiftPoly(b,sa) - b*shiftPoly(a,sb);
    2576   return(v);
    25772546}
    25782547
     
    31333102*/
    31343103
    3135 static proc lpMultX(poly f, poly g)
    3136 {
    3137   /* multiplies two polys in a very general setting correctly */
    3138   /* alternative to lpMult, possibly better at non-positive orderings */
    3139 
    3140   if (lpAssumeViolation())
    3141   {
    3142     ERROR("Incomplete Letterplace structure on the basering!");
    3143   }
    3144   // decompose f,g into graded pieces with inForm: need dmodapp.lib
    3145   int b = attrib(basering,"isLetterplaceRing");  // the length of the block
    3146   intvec w; // inherit the graded on the oridinal ring
    3147   int i;
    3148   for(i=1; i<=b; i++)
    3149   {
    3150     w[i] = deg(var(i));
    3151   }
    3152   intvec v = w;
    3153   for(i=1; i< attrib(basering,"uptodeg"); i++)
    3154   {
    3155     v = v,w;
    3156   }
    3157   w = v;
    3158   poly p,q,s, result;
    3159   s = g;
    3160   while (f!=0)
    3161   {
    3162     p = inForm(f,w)[1];
    3163     f = f - p;
    3164     s = g;
    3165     while (s!=0)
    3166     {
    3167       q = inForm(s,w)[1];
    3168       s = s - q;
    3169       result = result + lpMult(p,q);
    3170     }
    3171   }
    3172   // shrinking
    3173   //  result;
    3174   return( system("shrinktest",result,attrib(basering, "isLetterplaceRing")) );
    3175 }
    3176 example
    3177 {
    3178   "EXAMPLE:"; echo = 2;
    3179   // define a ring in letterplace form as follows:
    3180   ring r = 0,(x(1),y(1),x(2),y(2),x(3),y(3),x(4),y(4)),dp;
    3181   def R = setLetterplaceAttributes(r,4,2); // supply R with letterplace structure
    3182   setring R;
    3183   poly a = x(1)*y(2)+x(1)+y(1); poly b = y(1)+3;
    3184   lpMultX(b,a);
    3185   lpMultX(a,b);
    3186 }
    3187 
    3188 // multiply two letterplace polynomials, lpMult: done
    3189 // reduction/ Normalform? needs kernel stuff
    3190 
    3191 
    3192 proc lpMult(poly f, poly g)
    3193 "USAGE:  lpMult(f,g); f,g letterplace polynomials
    3194 RETURN:  poly
    3195 ASSUME: basering has a letterplace ring structure
    3196 PURPOSE: compute the letterplace form of f*g
    3197 EXAMPLE: example lpMult; shows examples
    3198 "
    3199 {
    3200 
    3201   // changelog:
    3202   // VL oct 2010: deg -> deg(_,w) for the length
    3203   // shrink the result => don't need to decompose polys
    3204   // since the shift is big enough
    3205 
    3206   // indeed it's better to have that
    3207   // ASSUME: both f and g are quasi-homogeneous
    3208 
    3209   if (lpAssumeViolation())
    3210   {
    3211     ERROR("Incomplete Letterplace structure on the basering!");
    3212   }
    3213   intvec w = 1:nvars(basering);
    3214   int sf = deg(f,w); // VL Oct 2010: we need rather length than degree
    3215   int sg = deg(g,w); // esp. in the case of weighted ordering
    3216   int uptodeg = attrib(basering, "uptodeg");
    3217   if (sf+sg > uptodeg)
    3218   {
    3219     ERROR("degree bound violated by the product!");
    3220   }
    3221   //  if (sf>1) { sf = sf -1; }
    3222   poly v = f*shiftPoly(g,sf);
    3223   // bug, reported by Simon King: in nonhomog case [solved]
    3224   // we need to shrink
    3225   return( system("shrinktest",v,attrib(basering, "isLetterplaceRing")) );
    3226 }
    3227 example
    3228 {
    3229   "EXAMPLE:"; echo = 2;
    3230   // define a ring in letterplace form as follows:
    3231   ring r = 0,(x(1),y(1),x(2),y(2),x(3),y(3),x(4),y(4)),dp;
    3232   def R = setLetterplaceAttributes(r,4,2); // supply R with letterplace structure
    3233   setring R;
    3234   poly a = x(1)*y(2)+x(1)+y(1); poly b = y(1)+3;
    3235   lpMult(b,a);
    3236   lpMult(a,b);
    3237 }
    3238 
    3239 proc lpPower(poly f, int n)
    3240 "USAGE:  lpPower(f,n); f letterplace polynomial, int n
    3241 RETURN:  poly
    3242 ASSUME: basering has a letterplace ring structure
    3243 PURPOSE: compute the letterplace form of f^n
    3244 EXAMPLE: example lpPower; shows examples
    3245 "
    3246 {
    3247   if (n<0) { ERROR("the power must be a natural number!"); }
    3248   if (n==0) { return(poly(1)); }
    3249   if (n==1) { return(f); }
    3250   int i;
    3251   poly p = 1;
    3252   for(i=1; i<= n; i++)
    3253   {
    3254     p = lpMult(p,f);
    3255   }
    3256   return(p);
    3257 }
    3258 example
    3259 {
    3260   "EXAMPLE:"; echo = 2;
    3261   // define a ring in letterplace form as follows:
    3262   ring r = 0,(x(1),y(1),x(2),y(2),x(3),y(3),x(4),y(4)),dp;
    3263   def R = setLetterplaceAttributes(r,4,2); // supply R with letterplace structure
    3264   setring R;
    3265   poly a = x(1)*y(2) + y(1); poly b = y(1) - 1;
    3266   lpPower(a,2);
    3267   lpPower(b,4);
    3268 }
     3104// static proc lpMultX(poly f, poly g)
     3105// {
     3106//   /* multiplies two polys in a very general setting correctly */
     3107//   /* alternative to lpMult, possibly better at non-positive orderings */
     3108//
     3109//   if (lpAssumeViolation())
     3110//   {
     3111//     ERROR("Incomplete Letterplace structure on the basering!");
     3112//   }
     3113//   // decompose f,g into graded pieces with inForm: need dmodapp.lib
     3114//   int b = attrib(basering,"isLetterplaceRing");  // the length of the block
     3115//   intvec w; // inherit the graded on the oridinal ring
     3116//   int i;
     3117//   for(i=1; i<=b; i++)
     3118//   {
     3119//     w[i] = deg(var(i));
     3120//   }
     3121//   intvec v = w;
     3122//   for(i=1; i< attrib(basering,"uptodeg"); i++)
     3123//   {
     3124//     v = v,w;
     3125//   }
     3126//   w = v;
     3127//   poly p,q,s, result;
     3128//   s = g;
     3129//   while (f!=0)
     3130//   {
     3131//     p = inForm(f,w)[1];
     3132//     f = f - p;
     3133//     s = g;
     3134//     while (s!=0)
     3135//     {
     3136//       q = inForm(s,w)[1];
     3137//       s = s - q;
     3138//       result = result + lpMult(p,q);
     3139//     }
     3140//   }
     3141//   // shrinking
     3142//   //  result;
     3143//   return( system("shrinktest",result,attrib(basering, "isLetterplaceRing")) );
     3144// }
     3145// example
     3146// {
     3147//   "EXAMPLE:"; echo = 2;
     3148//   // define a ring in letterplace form as follows:
     3149//   ring r = 0,(x(1),y(1),x(2),y(2),x(3),y(3),x(4),y(4)),dp;
     3150//   def R = setLetterplaceAttributes(r,4,2); // supply R with letterplace structure
     3151//   setring R;
     3152//   poly a = x(1)*y(2)+x(1)+y(1); poly b = y(1)+3;
     3153//   lpMultX(b,a);
     3154//   lpMultX(a,b);
     3155// }
     3156//
     3157// // multiply two letterplace polynomials, lpMult: done
     3158// // reduction/ Normalform? needs kernel stuff
     3159//
     3160//
     3161// proc lpMult(poly f, poly g)
     3162// "USAGE:  lpMult(f,g); f,g letterplace polynomials
     3163// RETURN:  poly
     3164// ASSUME: basering has a letterplace ring structure
     3165// PURPOSE: compute the letterplace form of f*g
     3166// EXAMPLE: example lpMult; shows examples
     3167// "
     3168// {
     3169//
     3170//   // changelog:
     3171//   // VL oct 2010: deg -> deg(_,w) for the length
     3172//   // shrink the result => don't need to decompose polys
     3173//   // since the shift is big enough
     3174//
     3175//   // indeed it's better to have that
     3176//   // ASSUME: both f and g are quasi-homogeneous
     3177//
     3178//   if (lpAssumeViolation())
     3179//   {
     3180//     ERROR("Incomplete Letterplace structure on the basering!");
     3181//   }
     3182//   intvec w = 1:nvars(basering);
     3183//   int sf = deg(f,w); // VL Oct 2010: we need rather length than degree
     3184//   int sg = deg(g,w); // esp. in the case of weighted ordering
     3185//   int uptodeg = attrib(basering, "uptodeg");
     3186//   if (sf+sg > uptodeg)
     3187//   {
     3188//     ERROR("degree bound violated by the product!");
     3189//   }
     3190//   //  if (sf>1) { sf = sf -1; }
     3191//   poly v = f*shiftPoly(g,sf);
     3192//   // bug, reported by Simon King: in nonhomog case [solved]
     3193//   // we need to shrink
     3194//   return( system("shrinktest",v,attrib(basering, "isLetterplaceRing")) );
     3195// }
     3196// example
     3197// {
     3198//   "EXAMPLE:"; echo = 2;
     3199//   // define a ring in letterplace form as follows:
     3200//   ring r = 0,(x(1),y(1),x(2),y(2),x(3),y(3),x(4),y(4)),dp;
     3201//   def R = setLetterplaceAttributes(r,4,2); // supply R with letterplace structure
     3202//   setring R;
     3203//   poly a = x(1)*y(2)+x(1)+y(1); poly b = y(1)+3;
     3204//   lpMult(b,a);
     3205//   lpMult(a,b);
     3206// }
     3207//
     3208// proc lpPower(poly f, int n)
     3209// "USAGE:  lpPower(f,n); f letterplace polynomial, int n
     3210// RETURN:  poly
     3211// ASSUME: basering has a letterplace ring structure
     3212// PURPOSE: compute the letterplace form of f^n
     3213// EXAMPLE: example lpPower; shows examples
     3214// "
     3215// {
     3216//   if (n<0) { ERROR("the power must be a natural number!"); }
     3217//   if (n==0) { return(poly(1)); }
     3218//   if (n==1) { return(f); }
     3219//   int i;
     3220//   poly p = 1;
     3221//   for(i=1; i<= n; i++)
     3222//   {
     3223//     p = lpMult(p,f);
     3224//   }
     3225//   return(p);
     3226// }
     3227// example
     3228// {
     3229//   "EXAMPLE:"; echo = 2;
     3230//   // define a ring in letterplace form as follows:
     3231//   ring r = 0,(x(1),y(1),x(2),y(2),x(3),y(3),x(4),y(4)),dp;
     3232//   def R = setLetterplaceAttributes(r,4,2); // supply R with letterplace structure
     3233//   setring R;
     3234//   poly a = x(1)*y(2) + y(1); poly b = y(1) - 1;
     3235//   lpPower(a,2);
     3236//   lpPower(b,4);
     3237// }
    32693238
    32703239// new: lp normal from by using shift-invariant data by Grischa Studzinski
     
    33873356  poly p;
    33883357  for (int i = 1; i <= size(L[2]); i++) {
    3389     p = p + lpMult(lpMult(L[2][i][2], I[L[2][i][1]]), L[2][i][3]);
     3358    p = p + L[2][i][2] * I[L[2][i][1]] * L[2][i][3];
    33903359  }
    33913360  p = p + L[1];
     
    37163685 for (i = 1; i <= size(g); i++)
    37173686 {
    3718    qt = qt + lpMult(lpMult(l,g[i]),r);
     3687   qt = qt + l*g[i]*r;
    37193688 }
    37203689 return(p - leadcoef(p)*normalize(qt));
    3721 }
    3722 
    3723 
    3724 static proc lpShrink(poly p)
    3725 "
    3726 "
    3727 {int n;
    3728  if (attrib(basering,"isLetterplaceRing")>0)
    3729  {n = attrib(basering,"isLetterplaceRing");
    3730   return(system("shrinktest",p,n));
    3731  }
    3732  else {ERROR("Basering is not a Letterplace ring!");}
    37333690}
    37343691
     
    39003857}
    39013858
    3902 static proc bugSKing()
    3903 {
    3904   LIB "freegb.lib";
    3905   ring r=0,(a,b),dp;
    3906   def R = makeLetterplaceRing(5);
    3907   setring R;
    3908   poly p = a(1);
    3909   poly q = b(1);
    3910   poly p2 = lpPower(p,2);
    3911   lpMult(p2+q,q)-lpMult(p2,q)-lpMult(q,q); // now its 0
    3912 }
    3913 
    3914 static proc bugRucker()
    3915 {
    3916   // needs unstatic lpMultX
    3917   LIB "freegb.lib";
    3918   ring r=0,(a,b,c,d,p,q,r,s,t,u,v,w),(a(7,1,1,7),dp);
    3919   def R=makeLetterplaceRing(20,1);
    3920   setring R;
    3921   option(redSB); option(redTail);
    3922   ideal I=a(1)*b(2)*c(3)-p(1)*q(2)*r(3)*s(4)*t(5)*u(6),b(1)*c(2)*d(3)-v(1)*w(2);
    3923   poly ttt = a(1)*v(2)*w(3)-p(1)*q(2)*r(3)*s(4)*t(5)*u(6)*d(7);
    3924   // with lpMult
    3925   lpMult(I[1],d(1)) - lpMult(a(1),I[2]); // spoly; has been incorrect before
    3926   _ - ttt;
    3927   // with lpMultX
    3928   lpMultX(I[1],d(1)) - lpMultX(a(1),I[2]); // spoly; has been incorrect before
    3929   _ - ttt;
    3930 }
    3931 
    3932 static proc checkWeightedExampleLP()
    3933 {
    3934   ring r = 0,(x(1),y(1),x(2),y(2),x(3),y(3),x(4),y(4)),wp(2,1,2,1,2,1,2,1);
    3935   def R = setLetterplaceAttributes(r,4,2); // supply R with letterplace structure
    3936   setring R;
    3937   poly a = x(1)*y(2)+x(1)+y(1); poly b = y(1)+3;
    3938   lpMultX(b,a);
    3939   lpMultX(a,b); // seems to work properly
    3940 }
     3859// static proc bugSKing()
     3860// {
     3861//   LIB "freegb.lib";
     3862//   ring r=0,(a,b),dp;
     3863//   def R = makeLetterplaceRing(5);
     3864//   setring R;
     3865//   poly p = a(1);
     3866//   poly q = b(1);
     3867//   poly p2 = lpPower(p,2);
     3868//   lpMult(p2+q,q)-lpMult(p2,q)-lpMult(q,q); // now its 0
     3869// }
     3870//
     3871// static proc bugRucker()
     3872// {
     3873//   // needs unstatic lpMultX
     3874//   LIB "freegb.lib";
     3875//   ring r=0,(a,b,c,d,p,q,r,s,t,u,v,w),(a(7,1,1,7),dp);
     3876//   def R=makeLetterplaceRing(20,1);
     3877//   setring R;
     3878//   option(redSB); option(redTail);
     3879//   ideal I=a(1)*b(2)*c(3)-p(1)*q(2)*r(3)*s(4)*t(5)*u(6),b(1)*c(2)*d(3)-v(1)*w(2);
     3880//   poly ttt = a(1)*v(2)*w(3)-p(1)*q(2)*r(3)*s(4)*t(5)*u(6)*d(7);
     3881//   // with lpMult
     3882//   lpMult(I[1],d(1)) - lpMult(a(1),I[2]); // spoly; has been incorrect before
     3883//   _ - ttt;
     3884//   // with lpMultX
     3885//   lpMultX(I[1],d(1)) - lpMultX(a(1),I[2]); // spoly; has been incorrect before
     3886//   _ - ttt;
     3887// }
     3888//
     3889// static proc checkWeightedExampleLP()
     3890// {
     3891//   ring r = 0,(x(1),y(1),x(2),y(2),x(3),y(3),x(4),y(4)),wp(2,1,2,1,2,1,2,1);
     3892//   def R = setLetterplaceAttributes(r,4,2); // supply R with letterplace structure
     3893//   setring R;
     3894//   poly a = x(1)*y(2)+x(1)+y(1); poly b = y(1)+3;
     3895//   lpMultX(b,a);
     3896//   lpMultX(a,b); // seems to work properly
     3897// }
    39413898
    39423899proc lpPrint(ideal I, def @r)
Note: See TracChangeset for help on using the changeset viewer.