Changeset e1cb99 in git
 Timestamp:
 Mar 2, 2010, 7:46:49 PM (13 years ago)
 Branches:
 (u'spielwiese', '0d6b7fcd9813a1ca1ed4220cfa2b104b97a0a003')
 Children:
 920a1e8c8bf9b487a06f6ab6aabb70aeb007a7bb
 Parents:
 02c3fb9f6dcd83a27c6e5509fb8fcabe08fe47fb
 File:

 1 edited
Legend:
 Unmodified
 Added
 Removed

Singular/LIB/jacobson.lib
r02c3fb re1cb99 48 48 LIB "dmodapp.lib"; // engine 49 49 LIB "qhmoduli.lib"; // Min 50 51 proc tstjacobson() 52 { 53 /* tests all procs for consistency */ 54 example divideUnits; 55 example smith; 56 example jacobson; 57 } 50 58 51 59 proc divideUnits(list L) … … 678 686 RETURN: list 679 687 ASSUME: Basering is a (noncommutative) ring in two variables. 680 PURPOSE: compute a weak Jacobson Normal Form of M over the basering688 PURPOSE: compute a weak Jacobson normal form of M over the basering 681 689 THEORY: Groebner bases and involutions are used, following [3] 682 NOTE: A list L of matrices {U,D,V} is returned. That is L[1]*M*L[3]=L[2], where 683 @* L[2] is a diagonal matrix and L[1], L[3] square invertible (unimodular) matrices. 690 NOTE: A list L of matrices {U,D,V} is returned. That is L[1]*M*L[3]=L[2], 691 @* where L[2] is a diagonal matrix and 692 @* L[1], L[3] are square invertible polynomial (unimodular) matrices. 684 693 @* Note, that M can be rectangular. 685 694 @* The optional integer @code{eng2} determines the Groebner basis engine:
Note: See TracChangeset
for help on using the changeset viewer.