Changeset e1cb99 in git


Ignore:
Timestamp:
Mar 2, 2010, 7:46:49 PM (13 years ago)
Author:
Viktor Levandovskyy <levandov@…>
Branches:
(u'spielwiese', '0d6b7fcd9813a1ca1ed4220cfa2b104b97a0a003')
Children:
920a1e8c8bf9b487a06f6ab6aabb70aeb007a7bb
Parents:
02c3fb9f6dcd83a27c6e5509fb8fcabe08fe47fb
Message:
*levandov: test proc and minor text changes

git-svn-id: file:///usr/local/Singular/svn/trunk@12577 2c84dea3-7e68-4137-9b89-c4e89433aadc
File:
1 edited

Legend:

Unmodified
Added
Removed
  • Singular/LIB/jacobson.lib

    r02c3fb re1cb99  
    4848  LIB "dmodapp.lib"; // engine
    4949  LIB "qhmoduli.lib"; // Min
     50
     51proc tstjacobson()
     52{
     53  /* tests all procs for consistency */
     54  example divideUnits;
     55  example smith;
     56  example jacobson;
     57}
    5058
    5159proc divideUnits(list L)
     
    678686RETURN: list
    679687ASSUME: Basering is a (non-commutative) ring in two variables.
    680 PURPOSE: compute a weak Jacobson Normal Form of M over the basering
     688PURPOSE: compute a weak Jacobson normal form of M over the basering
    681689THEORY: Groebner bases and involutions are used, following [3]
    682 NOTE: A list L of matrices {U,D,V} is returned. That is L[1]*M*L[3]=L[2], where
    683 @*      L[2] is a diagonal matrix and L[1], L[3] square invertible (unimodular) matrices.
     690NOTE: A list L of matrices {U,D,V} is returned. That is L[1]*M*L[3]=L[2],
     691@*      where L[2] is a diagonal matrix and
     692@*      L[1], L[3] are square invertible polynomial (unimodular) matrices.
    684693@*      Note, that M can be rectangular.
    685694@* The optional integer @code{eng2} determines the Groebner basis engine:
Note: See TracChangeset for help on using the changeset viewer.