Ignore:
Timestamp:
Mar 24, 2011, 11:28:29 AM (12 years ago)
Author:
Stefan Steidel <steidel@…>
Branches:
(u'spielwiese', '0d6b7fcd9813a1ca1ed4220cfa2b104b97a0a003')
Children:
012ff83468528432acb259d21dac5ef591cdbae7
Parents:
2ab830a563f54a42a41eb941f715cec3422755af
Message:
Description of basic concept provided in the OVERVIEW; brieskornSign --> signatureBrieskorn; signature --> signatureNemethi; Remark added to procedure signatureNemethi.

git-svn-id: file:///usr/local/Singular/svn/trunk@14046 2c84dea3-7e68-4137-9b89-c4e89433aadc
File:
1 edited

Legend:

Unmodified
Added
Removed
  • Singular/LIB/surfacesignature.lib

    r2ab830 re4e153d  
    1212
    1313  A library for computing the signature of irreducible surface singularity.
    14   The signature of a surface singularity is defined in [Durfee, A.: The
    15   Signature of Smoothings of Complex Surface Singularities, Math. Ann., 232,
    16   85-98 (1978)]. The algorithm we use has been proposed in [Nemethi, A.: The
    17   signature of f(x,y)+z^N, Proceedings of Singularity Conference (C.T.C. Wall's
    18   60th birthday meeting), Liverpool 1996, London Math.Soc. LN 263(1999),
    19   131-149].
     14  The signature of a surface singularity is defined in [3]. The algorithm we
     15  use has been proposed in [9].
     16  Let g in C[x,y] define an isolated curve singularity at 0 in C^2 and
     17  f:=z^N+g(x,y). The zero-set V:=V(f) in C^3 of f has an isolated singularity
     18  at 0. For a small e>0 let V_e:=V(f-e) in C^3 be the Milnor fibre of (V,0) and
     19  s: H_2(V_e,R) x H_2(V_e,R) ---> R be the intersection form (cf. [1],[7]).
     20  H_2(V_e,R) is an m-dimensional R-vector space, m the Milnor number of (V,0)
     21  (cf. [1],[4],[5],[6]), and s is a symmetric bilinear form.
     22  Let sigma(f) be the signature of s, called the signature of the surface
     23  singularity (V,0). Formulaes to compute the signature are given by Nemethi
     24  (cf. [8],[9]) and van Doorn, Steenbrink (cf. [2]).
     25  We have implemented three approaches using Puiseux expansions, the resolution
     26  of singularities resp. the spectral pairs of the singularity.
     27 
     28REFERENCES:
     29
     30 [1] Arnold, V.I.; Gusein-Zade, S.M.; Varchenko, A.N.: Singularities of
     31     Differentiable Mappings. Vol. 1,2, Birkh\"auser (1988).
     32 [2] van Doorn, M.G.M.; Steenbrink, J.H.M.: A supplement to the monodromy
     33     theorem. Abh. Math. Sem. Univ. Hamburg 59, 225-233 (1989).
     34 [3] Durfee, A.H.: The Signature of Smoothings of Complex Surface
     35     Singularities. Mathematische Annalen 232, 85-98 (1978).
     36 [4] de Jong, T.; Pfister, G.: Local Analytic Geometry. Vieweg (2000).
     37 [5] Kerner, D.; Nemethi, A.: The Milnor fibre signature is not semi-continous.
     38     arXiv:0907.5252 (2009).
     39 [6] Kulikov, V.S.: Mixed Hodge Structures and Singularities. Cambridge Tracts
     40     in Mathematics 132, Cambridge University Press (1998).
     41 [7] Nemethi, A.: The real Seifert form and the spectral pairs of isolated
     42     hypersurface singularities. Compositio Mathematica 98, 23-41 (1995).
     43 [8] Nemethi, A.: Dedekind sums and the signature of f(x,y)+z^N. Selecta
     44     Mathematica, New series, Vol. 4, 361-376 (1998).
     45 [9] Nemethi, A.: The Signature of f(x,y)+z^$. Proceedings of Real and Complex
     46     Singularities (C.T.C. Wall's 60th birthday meeting, Liverpool (England),
     47     August 1996), London Math. Soc. Lecture Notes Series 263, 131--149 (1999).
    2048
    2149PROCEDURES:
    22  brieskornSign(a1,a2,a3);  signature of Brieskorn singularity x^a1+y^a2+z^a3
    23  signature(N,f);           signature of singularity z^N+f(x,y)=0, f irreducible
     50 signatureBrieskorn(a1,a2,a3);  signature of singularity x^a1+y^a2+z^a3
     51 signatureNemethi(N,f);         signature of singularity z^N+f(x,y)=0, f irred.
    2452";
    2553
     
    6997///////////////////////////////////////////////////////////////////////////////
    7098
    71 proc brieskornSign(a1,a2,a3)
    72 "USAGE:  brieskornSign(a1,a2,a3); a1,a2,a3 = integers
     99proc signatureBrieskorn(a1,a2,a3)
     100"USAGE:  signatureBrieskorn(a1,a2,a3); a1,a2,a3 = integers
    73101RETURN:  signature of Brieskorn singularity x^a1+y^a2+z^a3
    74 EXAMPLE: example brieskornSign; shows an example
     102EXAMPLE: example signatureBrieskorn; shows an example
    75103"
    76104{
     
    115143{ "EXAMPLE:"; echo = 2;
    116144   ring R = 0,x,dp;
    117    brieskornSign(11,3,5);
     145   signatureBrieskorn(11,3,5);
    118146}
    119147
     
    132160   if(s == 1)
    133161   {
    134       return(brieskornSign(L[1][1], L[2][1], N));
     162      return(signatureBrieskorn(L[1][1], L[2][1], N));
    135163   }
    136164
    137165   prod = 1;
    138    sigma = brieskornSign(L[1][s], L[2][s], N);
     166   sigma = signatureBrieskorn(L[1][s], L[2][s], N);
    139167   for(i = s - 1; i >= 1; i--)
    140168   {
    141169      prod = prod * L[2][i+1];
    142170      d = gcd(N, prod);
    143       sigma = sigma + d * brieskornSign(L[1][i], L[2][i], N/d);
     171      sigma = sigma + d * signatureBrieskorn(L[1][i], L[2][i], N/d);
    144172   }
    145173
     
    359387//---------------- Consolidation of the three former variants -----------------
    360388
    361 proc signature(int N, poly f, list #)
    362 "USAGE:  signature(N,f); N = integer, f = reduced poly in 2 variables,
    363                          # empty or 1,2,3
     389proc signatureNemethi(int N, poly f, list #)
     390"USAGE:  signatureNemethi(N,f); N = integer, f = reduced poly in 2 variables,
     391                                # empty or 1,2,3
    364392@*       - if # is empty or #[1] = 2 then resolution of singularities is used
    365393@*       - if #[1] = 1 then f has to be analytically irreducible and Puiseux
     
    367395@*       - if #[1] = 3 then spectral pairs are used
    368396RETURN:  signature of surface singularity defined by z^N + f(x,y) = 0
    369 EXAMPLE: example signature; shows an example
     397REMARK:  computes the signature of some special surface singularities
     398EXAMPLE: example signatureNemethi; shows an example
    370399"
    371400{
     
    405434   poly f = x15-21x14+8x13y-6x13-16x12y+20x11y2-x12+8x11y-36x10y2
    406435            +24x9y3+4x9y2-16x8y3+26x7y4-6x6y4+8x5y5+4x3y6-y8;
    407    signature(N,f,1);
    408    signature(N,f,2);
     436   signatureNemethi(N,f,1);
     437   signatureNemethi(N,f,2);
    409438}
    410439
Note: See TracChangeset for help on using the changeset viewer.