Changeset e4e153d in git for Singular/LIB/surfacesignature.lib
- Timestamp:
- Mar 24, 2011, 11:28:29 AM (12 years ago)
- Branches:
- (u'spielwiese', '0d6b7fcd9813a1ca1ed4220cfa2b104b97a0a003')
- Children:
- 012ff83468528432acb259d21dac5ef591cdbae7
- Parents:
- 2ab830a563f54a42a41eb941f715cec3422755af
- File:
-
- 1 edited
Legend:
- Unmodified
- Added
- Removed
-
Singular/LIB/surfacesignature.lib
r2ab830 re4e153d 12 12 13 13 A library for computing the signature of irreducible surface singularity. 14 The signature of a surface singularity is defined in [Durfee, A.: The 15 Signature of Smoothings of Complex Surface Singularities, Math. Ann., 232, 16 85-98 (1978)]. The algorithm we use has been proposed in [Nemethi, A.: The 17 signature of f(x,y)+z^N, Proceedings of Singularity Conference (C.T.C. Wall's 18 60th birthday meeting), Liverpool 1996, London Math.Soc. LN 263(1999), 19 131-149]. 14 The signature of a surface singularity is defined in [3]. The algorithm we 15 use has been proposed in [9]. 16 Let g in C[x,y] define an isolated curve singularity at 0 in C^2 and 17 f:=z^N+g(x,y). The zero-set V:=V(f) in C^3 of f has an isolated singularity 18 at 0. For a small e>0 let V_e:=V(f-e) in C^3 be the Milnor fibre of (V,0) and 19 s: H_2(V_e,R) x H_2(V_e,R) ---> R be the intersection form (cf. [1],[7]). 20 H_2(V_e,R) is an m-dimensional R-vector space, m the Milnor number of (V,0) 21 (cf. [1],[4],[5],[6]), and s is a symmetric bilinear form. 22 Let sigma(f) be the signature of s, called the signature of the surface 23 singularity (V,0). Formulaes to compute the signature are given by Nemethi 24 (cf. [8],[9]) and van Doorn, Steenbrink (cf. [2]). 25 We have implemented three approaches using Puiseux expansions, the resolution 26 of singularities resp. the spectral pairs of the singularity. 27 28 REFERENCES: 29 30 [1] Arnold, V.I.; Gusein-Zade, S.M.; Varchenko, A.N.: Singularities of 31 Differentiable Mappings. Vol. 1,2, Birkh\"auser (1988). 32 [2] van Doorn, M.G.M.; Steenbrink, J.H.M.: A supplement to the monodromy 33 theorem. Abh. Math. Sem. Univ. Hamburg 59, 225-233 (1989). 34 [3] Durfee, A.H.: The Signature of Smoothings of Complex Surface 35 Singularities. Mathematische Annalen 232, 85-98 (1978). 36 [4] de Jong, T.; Pfister, G.: Local Analytic Geometry. Vieweg (2000). 37 [5] Kerner, D.; Nemethi, A.: The Milnor fibre signature is not semi-continous. 38 arXiv:0907.5252 (2009). 39 [6] Kulikov, V.S.: Mixed Hodge Structures and Singularities. Cambridge Tracts 40 in Mathematics 132, Cambridge University Press (1998). 41 [7] Nemethi, A.: The real Seifert form and the spectral pairs of isolated 42 hypersurface singularities. Compositio Mathematica 98, 23-41 (1995). 43 [8] Nemethi, A.: Dedekind sums and the signature of f(x,y)+z^N. Selecta 44 Mathematica, New series, Vol. 4, 361-376 (1998). 45 [9] Nemethi, A.: The Signature of f(x,y)+z^$. Proceedings of Real and Complex 46 Singularities (C.T.C. Wall's 60th birthday meeting, Liverpool (England), 47 August 1996), London Math. Soc. Lecture Notes Series 263, 131--149 (1999). 20 48 21 49 PROCEDURES: 22 brieskornSign(a1,a2,a3); signature of Brieskornsingularity x^a1+y^a2+z^a323 signature (N,f); signature of singularity z^N+f(x,y)=0, f irreducible50 signatureBrieskorn(a1,a2,a3); signature of singularity x^a1+y^a2+z^a3 51 signatureNemethi(N,f); signature of singularity z^N+f(x,y)=0, f irred. 24 52 "; 25 53 … … 69 97 /////////////////////////////////////////////////////////////////////////////// 70 98 71 proc brieskornSign(a1,a2,a3)72 "USAGE: brieskornSign(a1,a2,a3); a1,a2,a3 = integers99 proc signatureBrieskorn(a1,a2,a3) 100 "USAGE: signatureBrieskorn(a1,a2,a3); a1,a2,a3 = integers 73 101 RETURN: signature of Brieskorn singularity x^a1+y^a2+z^a3 74 EXAMPLE: example brieskornSign; shows an example102 EXAMPLE: example signatureBrieskorn; shows an example 75 103 " 76 104 { … … 115 143 { "EXAMPLE:"; echo = 2; 116 144 ring R = 0,x,dp; 117 brieskornSign(11,3,5);145 signatureBrieskorn(11,3,5); 118 146 } 119 147 … … 132 160 if(s == 1) 133 161 { 134 return( brieskornSign(L[1][1], L[2][1], N));162 return(signatureBrieskorn(L[1][1], L[2][1], N)); 135 163 } 136 164 137 165 prod = 1; 138 sigma = brieskornSign(L[1][s], L[2][s], N);166 sigma = signatureBrieskorn(L[1][s], L[2][s], N); 139 167 for(i = s - 1; i >= 1; i--) 140 168 { 141 169 prod = prod * L[2][i+1]; 142 170 d = gcd(N, prod); 143 sigma = sigma + d * brieskornSign(L[1][i], L[2][i], N/d);171 sigma = sigma + d * signatureBrieskorn(L[1][i], L[2][i], N/d); 144 172 } 145 173 … … 359 387 //---------------- Consolidation of the three former variants ----------------- 360 388 361 proc signature (int N, poly f, list #)362 "USAGE: signature (N,f); N = integer, f = reduced poly in 2 variables,363 # empty or 1,2,3389 proc signatureNemethi(int N, poly f, list #) 390 "USAGE: signatureNemethi(N,f); N = integer, f = reduced poly in 2 variables, 391 # empty or 1,2,3 364 392 @* - if # is empty or #[1] = 2 then resolution of singularities is used 365 393 @* - if #[1] = 1 then f has to be analytically irreducible and Puiseux … … 367 395 @* - if #[1] = 3 then spectral pairs are used 368 396 RETURN: signature of surface singularity defined by z^N + f(x,y) = 0 369 EXAMPLE: example signature; shows an example 397 REMARK: computes the signature of some special surface singularities 398 EXAMPLE: example signatureNemethi; shows an example 370 399 " 371 400 { … … 405 434 poly f = x15-21x14+8x13y-6x13-16x12y+20x11y2-x12+8x11y-36x10y2 406 435 +24x9y3+4x9y2-16x8y3+26x7y4-6x6y4+8x5y5+4x3y6-y8; 407 signature (N,f,1);408 signature (N,f,2);436 signatureNemethi(N,f,1); 437 signatureNemethi(N,f,2); 409 438 } 410 439
Note: See TracChangeset
for help on using the changeset viewer.