Changeset e84f07d in git


Ignore:
Timestamp:
Mar 16, 2009, 12:34:10 PM (15 years ago)
Author:
Thomas Markwig <keilen@…>
Branches:
(u'fieker-DuVal', '117eb8c30fc9e991c4decca4832b1d19036c4c65')(u'spielwiese', '3720ae8bfcff4a4649ee98a15552089151d2d59b')
Children:
bc103b1993b606247dbfebaa278db1467ca2c15b
Parents:
a81e0b7a47bc8fc3194c348a4291cf22ceed6c27
Message:
einige Hilfstexte verbessert


git-svn-id: file:///usr/local/Singular/svn/trunk@11561 2c84dea3-7e68-4137-9b89-c4e89433aadc
File:
1 edited

Legend:

Unmodified
Added
Removed
  • Singular/LIB/polymake.lib

    ra81e0b7 re84f07d  
    1 version="$Id: polymake.lib,v 1.10 2009-01-14 16:07:05 Singular Exp $";
     1version="$Id: polymake.lib,v 1.11 2009-03-16 11:34:10 keilen Exp $";
    22category="Tropical Geometry";
    33info="
     
    348348"USAGE:  normalFan (vert,aff,graph,rays,[,#]);   vert,aff intmat,  graph list, rays int, # string
    349349ASSUME:  - vert is an integer matrix whose rows are the coordinate of the vertices of
    350            a convex lattice polygon;
     350           a convex lattice polytope;
    351351@*       - aff describes the affine hull of this polytope, i.e.
    352352           the smallest affine space containing it, in the following sense:
     
    10321032@*             L[1][i][1] = integer matrix representing the inequalities which describe the
    10331033                            cone dual to the ith vertex
    1034 @*             L[1][i][2] = a list which contains the inequalities represented by L[i][1]
     1034@*             L[1][i][2] = a list which contains the inequalities represented by L[1][i][1]
    10351035                            as a list of strings, where we use the variables x(1),...,x(n)
    10361036@*             L[1][i][3] = only present if 'er' is set to 1; in that case it is an interger matrix
     
    21482148RETURN:  none"
    21492149{
    2150   if (i==1)
     2150  if ((i==1) and (defined(polymakekeeptmpfiles)==0))
    21512151  {
    21522152    int polymakekeeptmpfiles;
    2153     export polymakekeeptmpfiles;
    2154   }
    2155   else
     2153    export(polymakekeeptmpfiles);
     2154  }
     2155  if (i!=1)
    21562156  {
    21572157    if (defined(polymakekeeptmpfiles))
     
    25152515
    25162516
    2517 /*
    2518 proc ADeterminant (list polygon,list #)
    2519 {
    2520   list triangs=triangulations(polygon);
    2521   list sppg=splitPolygon(polygon);
    2522   list etavectors;
    2523   int i,j;
    2524   int stop;
    2525   for (i=1;i<=size(triangs);i++)
    2526   {
    2527     etavectors[i]=eta(triangs[i],sppg);
    2528   }
    2529   size(etavectors);
    2530 
    2531   for (i=size(etavectors);i>=2;i--)
    2532   {
    2533     stop=0;
    2534     for (j=1;(j<i) and (stop==0);j++)
    2535     {
    2536       if (etavectors[i]==etavectors[j])
    2537       {
    2538         etavectors=delete(etavectors,i);
    2539         stop=1;
    2540       }
    2541     }
    2542   }
    2543   size(etavectors);
    2544   if (size(#)>0)
    2545   {
    2546     execute("ring ADring=(0,a(1.."+string(size(etavectors))+")),("+polygonToCoordinates(polygon)[1]+"),lp;");
    2547     list terme;
    2548     poly ad,term;
    2549     matrix XE[1][1];
    2550     for (i=1;i<=size(etavectors);i++)
    2551     {
    2552       term=1;
    2553       for (j=1;j<=nvars(basering);j++)
    2554       {
    2555         term=term*var(j)^etavectors[i][j];
    2556       }
    2557       terme[i]=term;
    2558       ad=ad+a(i)*term;
    2559     }
    2560     matrix M[size(etavectors)][nvars(basering)];
    2561     for (i=1;i<=size(etavectors);i++)
    2562     {
    2563     }
    2564     return(list(etavectors,string(ad)));
    2565 
    2566 
    2567   }
    2568 
    2569   return(etavectors);
    2570 }
    2571 
    2572 proc adsub ()
    2573 {
    2574   ring r=0,(x,y,u00,u10,u20,u01,u11,u02,a(1..5)),dp;
    2575   poly f1=(3x-y+1)*(2x+y+1);
    2576   poly f2=(7x+2y-1)*(x+y);
    2577   poly f3=(x-y-2)*(x+y+3);
    2578   poly f4=(17x-11y+3)*(x+7y-2);
    2579   poly f5=(x+2y-7)*(3x+3y-1);
    2580   poly f6=(2x+12y-17)*(33x-3y-1);
    2581   matrix M1=coeffs(f1,ideal(1,x,x2,y,xy,y2));
    2582   matrix M2=coeffs(f2,ideal(1,x,x2,y,xy,y2));
    2583   matrix M3=coeffs(f3,ideal(1,x,x2,y,xy,y2));
    2584   matrix M4=coeffs(f4,ideal(1,x,x2,y,xy,y2));
    2585   matrix M5=coeffs(f5,ideal(1,x,x2,y,xy,y2));
    2586   matrix M6=coeffs(f6,ideal(1,x,x2,y,xy,y2));
    2587   poly f=(a(5))*u00*u20*u02+(a(3))*u00*u11^2+(a(4))*u10^2*u02+(a(2))*u10*u01*u11+(a(1))*u20*u01^2;
    2588   poly g1=substitute(f,u00,M1[1,1],u10,M1[2,1],u20,M1[3,1],u01,M1[4,1],u11,M1[5,1],u02,M1[6,1]);
    2589   poly g2=substitute(f,u00,M2[1,1],u10,M2[2,1],u20,M2[3,1],u01,M2[4,1],u11,M2[5,1],u02,M2[6,1]);
    2590   poly g3=substitute(f,u00,M3[1,1],u10,M3[2,1],u20,M3[3,1],u01,M3[4,1],u11,M3[5,1],u02,M3[6,1]);
    2591   poly g4=substitute(f,u00,M4[1,1],u10,M4[2,1],u20,M4[3,1],u01,M4[4,1],u11,M4[5,1],u02,M4[6,1]);
    2592   poly g5=substitute(f,u00,M5[1,1],u10,M5[2,1],u20,M5[3,1],u01,M5[4,1],u11,M5[5,1],u02,M5[6,1]);
    2593   poly g6=substitute(f,u00,M6[1,1],u10,M6[2,1],u20,M6[3,1],u01,M6[4,1],u11,M6[5,1],u02,M6[6,1]);
    2594   ideal i=g1,g2,g3,g4,g5,g6;
    2595   option(redSB);
    2596   ideal j=std(i);
    2597   poly ff=substitute(f,a(5),4,a(4),-1,a(3),-1,a(2),1,a(1),-1);
    2598   return(string(ff));
    2599 }
    2600 
    2601 */
Note: See TracChangeset for help on using the changeset viewer.