Changeset e9f5b2 in git
 Timestamp:
 Jul 7, 2009, 6:29:58 PM (15 years ago)
 Branches:
 (u'fiekerDuVal', '117eb8c30fc9e991c4decca4832b1d19036c4c65')(u'spielwiese', 'd25190065115c859833252500a64cfb7b11e3a50')
 Children:
 642e65dac97b59e7fbbbcd4fa0e29e65a4ae0853
 Parents:
 6d5f07fc0cb4ce2f4c48acf8a4816a6c809a5175
 File:

 1 edited
Legend:
 Unmodified
 Added
 Removed

Singular/LIB/ncdecomp.lib
r6d5f07 re9f5b2 1 1 /////////////////////////////////////////////////////////////////////////////// 2 version="$Id: ncdecomp.lib,v 1.1 4 20090409 12:04:42 seelischExp $";2 version="$Id: ncdecomp.lib,v 1.15 20090707 16:29:58 levandov Exp $"; 3 3 category="Noncommutative"; 4 4 info=" … … 7 7 8 8 OVERVIEW: 9 This library presents algorithms for the central character 10 decomposition of a module, i.e. a decomposition into generalized weight modules with respect to the center. Based on ideas of O. Khomenko and V. Levandovskyy (see the article [L2] in the References for details). 9 @* This library presents algorithms for the central character decomposition of a module, 10 @* i.e. a decomposition into generalized weight modules with respect to the center. 11 @* Based on ideas of O. Khomenko and V. Levandovskyy (see the article [L2] in the 12 @* References for details). 11 13 12 14 PROCEDURES: … … 19 21 LIB "ncalg.lib"; 20 22 LIB "primdec.lib"; 21 /////////////////////////////////////////////////////////////////////////////// 23 LIB "central.lib"; 24 25 /////////////////////////////////////////////////////////////////////////////// 26 27 proc testncdecomplib() 28 { 29 example CentralQuot; 30 example CentralSaturation; 31 example CenCharDec; 32 example IntersectWithSub; 33 } 34 22 35 static proc CharKernel(list L, int i) 23 36 { … … 106 119 RETURN: module 107 120 PURPOSE: compute the central quotient M:G 108 THEORY: for an ideal G of the center of an algebra and a submodule M of A^n, the central quotient of M by G is defined to be 121 THEORY: for an ideal G of the center of an algebra and a submodule M of A^n, 122 @* the central quotient of M by G is defined to be 109 123 @* M:G := { v in A^n  z*v in M, for all z in G }. 110 124 NOTE: the output module is not necessarily given in a Groebner basis … … 112 126 EXAMPLE: example CentralQuot; shows examples 113 127 "{ 128 /* check assupmtion. Elt's of G must be central */ 129 if (! inCenter(G) ) 130 { 131 ERROR("ideal in the 2nd argument is not in the center of the base ring!"); 132 } 114 133 int i; 115 134 list @L; … … 147 166 EXAMPLE: example CentralSaturation; shows examples 148 167 "{ 168 /* check assupmtion. Elt's of T must be central */ 169 if (! inCenter(T) ) 170 { 171 ERROR("ideal in the 2nd argument is not in the center of the base ring!"); 172 } 149 173 option(redSB); 150 174 option(redTail); … … 209 233 Center = #; 210 234 } 235 236 /* check assupmtion. Elt's of G must be central */ 237 if (! inCenter(Center) ) 238 { 239 ERROR("ideal in the 2nd argument is not in the center of the base ring!"); 240 } 241 211 242 // M = A/I 212 243 //1. Find the Zariski closure of Supp_Z M … … 335 366 "USAGE: IntersectWithSub(M,Z), M an ideal, Z an ideal 336 367 ASSUME: Z consists of pairwise commutative elements 337 RETURN: ideal ,of twosided generators, not a Groebner basis368 RETURN: ideal of twosided generators, not a Groebner basis 338 369 PURPOSE: computes the intersection of M with the subalgebra, generated by Z 339 370 NOTE: usually Z consists of generators of the center … … 358 389 } 359 390 // returns a submodule of M, equal to M \cap Z 360 // correctness: Z should consists of pairwise391 // assume/correctness: Z should consists of pairwise 361 392 // commutative elements 362 393 int nz = size(Z);
Note: See TracChangeset
for help on using the changeset viewer.