Changeset edfd36 in git for Singular/LIB/urrcount.lib
- Timestamp:
- May 6, 2005, 1:17:33 PM (18 years ago)
- Branches:
- (u'spielwiese', '8e0ad00ce244dfd0756200662572aef8402f13d5')
- Children:
- 7acf9bf2b74329722c5db8dcbfad38aefc35a663
- Parents:
- 6ed9240d0e05977f97c2c93af491078329ba7b6d
- File:
-
- 1 edited
Legend:
- Unmodified
- Added
- Removed
-
Singular/LIB/urrcount.lib
r6ed924 redfd36 1 // $Id: urrcount.lib,v 1. 4 2005-05-06 09:42:01Singular Exp $1 // $Id: urrcount.lib,v 1.5 2005-05-06 11:17:33 Singular Exp $ 2 2 // E. Tobis 12.Nov.2004, April 2004 3 // last change 1. May 2005 (G.-M. Greuel)3 // last change 5. May 2005 (G.-M. Greuel) 4 4 /////////////////////////////////////////////////////////////////////////////// 5 5 category="Symbolic-numerical solving" … … 63 63 proc isparam(list #) 64 64 "USAGE: isparam(ideal/module/poly/list); 65 RETURN: int: 0 if the argument is not parametric and 1 if it 65 RETURN: int: 0 if the argument has non-parametric coefficients 66 and 1 if it has 66 67 EXAMPLE: example isparam; shows an example" 67 68 { … … 218 219 proc varsigns(list l) 219 220 "USAGE: varsigns(l); list l. 220 RETURN: number: the number of sign changes in the list l221 RETURN: int: the number of sign changes in the list l 221 222 SEE ALSO: boundposDes 222 223 EXAMPLE: example varsigns; shows an example" … … 251 252 proc boundBuFou(poly p,number a,number b) 252 253 "USAGE: boundBuFou(p,a,b); p poly, a,b number 253 RETURN: number: an upper bound for the number of real roots of p in (a,b],254 RETURN: int: an upper bound for the number of real roots of p in (a,b], 254 255 with the same parity as the actual number of roots (using the 255 256 Budan-Fourier Theorem) … … 315 316 proc boundposDes(poly p) 316 317 "USAGE: boundposDes(p); poly p 317 RETURN: number: an upper bound for the number of positive roots of p, with318 RETURN: int: an upper bound for the number of positive roots of p, with 318 319 the same parity as the actual number of positive roots of p. 319 320 ASSUME: p is a univarite polynomials with rational coefficients … … 369 370 proc boundDes(poly p) 370 371 "USAGE: boundDes(p); poly p 371 RETURN: number: an upper bound for the number of real roots of p, with372 RETURN: int: an upper bound for the number of real roots of p, with 372 373 the same parity as the actual number of real roots of p. 373 374 ASSUME: p is a univarite polynomials with rational coefficients … … 434 435 proc allrealst(poly p) 435 436 "USAGE: allrealst(p); poly p 436 RETURN: int: 1 iff all the roots of p are real, 0 otherwise 437 RETURN: int: 1 iff all the roots of p are real, 0 otherwise. 437 438 Checks whether all the roots of p are real by using Sturm's Theorem 438 439 ASSUME: p is a univarite polynomials with rational coefficients … … 506 507 proc sturm(poly p,number a,number b) 507 508 "USAGE: sturm(p,a,b); poly p, number a,b 508 RETURN: number: the number of real roots of p in (a,b]509 RETURN: int: the number of real roots of p in (a,b] 509 510 ASSUME: p is a univarite polynomials with rational coefficients, 510 511 a, b are rational numbers with a < b … … 630 631 proc allreal(poly p) 631 632 "USAGE: allreal(p); 632 RETURN: bool: 1 iff all the roots of p are real633 RETURN: int: 1 iff all the roots of p are real, 0 otherwise 633 634 SEE ALSO: allrealst 634 635 EXAMPLE: example allreal; shows an example" … … 664 665 proc sturmha(poly P,number a,number b) 665 666 "USAGE: sturmha(p,a,b); poly p, number a,b 666 RETURN: number: the number of real roots of p in (a,b) (using a667 RETURN: int: the number of real roots of p in (a,b) (using a 667 668 Sturm-Habicht sequence) 668 669 SEE ALSO: sturm,allreal … … 674 675 poly variable; 675 676 number bound; 676 number result; 677 //number result; 678 int result; 677 679 678 680 if (isparam(P) || isparam(a) || isparam(b)) { … … 834 836 proc nrroots(poly p) 835 837 "USAGE: nrroots(p); poly p 836 RETURN: number: the number of real roots of p838 RETURN: int: the number of real roots of p 837 839 SEE ALSO: boundposDes, sturm, sturmha 838 840 EXAMPLE: example nrroots; shows an example" … … 1031 1033 1032 1034 1035
Note: See TracChangeset
for help on using the changeset viewer.