Changeset efda70a in git


Ignore:
Timestamp:
Dec 22, 2000, 4:30:39 PM (22 years ago)
Author:
Gert-Martin Greuel <greuel@…>
Branches:
(u'spielwiese', '0d6b7fcd9813a1ca1ed4220cfa2b104b97a0a003')
Children:
d12655392902e307fcafa46636933f225e153bf8
Parents:
a23294c03b4cae79224ffe24e90efc7e57c01fbc
Message:
* GMG: Prozedur monodromy in monodromyB umbenannt


git-svn-id: file:///usr/local/Singular/svn/trunk@4985 2c84dea3-7e68-4137-9b89-c4e89433aadc
File:
1 edited

Legend:

Unmodified
Added
Removed
  • Singular/LIB/mondromy.lib

    ra23294 refda70a  
    11///////////////////////////////////////////////////////////////////////////////
    2 version="$Id: mondromy.lib,v 1.18 2000-12-22 14:16:11 greuel Exp $";
     2version="$Id: mondromy.lib,v 1.19 2000-12-22 15:30:39 greuel Exp $";
    33category="Singularities";
    44info="
     
    88OVERVIEW:
    99 A library to compute the monodromy of an isolated hypersurface singularity.
    10  It uses an algorithm by Brieskorn (manuscipta math. 2 (1970), 103-161) to
     10 It uses an algorithm by Brieskorn (manuscripta math. 2 (1970), 103-161) to
    1111 compute a connection matrix of the meromorphic Gauss-Manin connection up to
    1212 arbitrarily high order, and an algorithm of Gerard and Levelt (Ann. Inst.
     
    1717 invunit(u,n);         series inverse of polynomial u up to order n
    1818 jacoblift(f);         lifts f^kappa in jacob(f) with minimal kappa
    19  monodromy(f[,opt]);   monodromy of isolated hypersurface singularity f
     19 monodromyB(f[,opt]);  monodromy of isolated hypersurface singularity f
    2020 H2basis(f);           basis of Brieskorn lattice H''
     21
     22KEYWORDS: Monodromy, hypersurface singularity, Gauss-Manin connection,
     23          Brieskorn lattice
     24
     25SEE ALSO: gaussman.lib
    2126";
    2227
     
    815820///////////////////////////////////////////////////////////////////////////////
    816821
    817 proc monodromy(poly f, list #)
    818 "USAGE:   monodromy(f[,opt]); f poly, opt int
     822proc monodromyB(poly f, list #)
     823"USAGE:   monodromyB(f[,opt]); f poly, opt int
    819824ASSUME:  The polynomial f in a series ring (local ordering) defines
    820825         an isolated hypersurface singularity.
     
    826831         with the characteristic polynomial of the monodromy of f.
    827832DISPLAY: The procedure displays more comments for higher printlevel.
    828 EXAMPLE: example monodromy; shows an example.
     833EXAMPLE: example monodromyB; shows an example.
    829834"
    830835{
     
    915920  ring R=0,(x,y),ds;
    916921  poly f=x2y2+x6+y6;
    917   matrix M=monodromy(f);
     922  matrix M=monodromyB(f);
    918923  print(M);
    919924}
Note: See TracChangeset for help on using the changeset viewer.