Changeset f32177 in git


Ignore:
Timestamp:
Apr 7, 2009, 11:31:52 AM (14 years ago)
Author:
Frank Seelisch <seelisch@…>
Branches:
(u'jengelh-datetime', 'ceac47cbc86fe4a15902392bdbb9bd2ae0ea02c6')(u'spielwiese', 'a800fe4b3e9d37a38c5a10cc0ae9dfa0c15a4ee6')
Children:
0ad81f2c92a459da3968f1add8868540fe570fb8
Parents:
1288efb1bc6f003f059484c99a625cf47c1ed08b
Message:
removed some docu errors prior to release 3-1-0


git-svn-id: file:///usr/local/Singular/svn/trunk@11635 2c84dea3-7e68-4137-9b89-c4e89433aadc
Files:
7 edited

Legend:

Unmodified
Added
Removed
  • Singular/LIB/brnoeth.lib

    r1288ef rf32177  
    1 version="$Id: brnoeth.lib,v 1.20 2008-10-07 17:36:30 Singular Exp $";
     1version="$Id: brnoeth.lib,v 1.21 2009-04-07 09:30:44 seelisch Exp $";
    22category="Coding theory";
    33info="
     
    88OVERVIEW:
    99 Implementation of the Brill-Noether algorithm for solving the
    10  Riemann-Roch problem and applications in Algebraic Geometry codes.
     10 Riemann-Roch problem and applications to Algebraic Geometry codes.
    1111 The computation of Weierstrass semigroups is also implemented.@*
    1212 The procedures are intended only for plane (singular) curves defined over
     
    1515
    1616MAIN PROCEDURES:
    17  Adj_div(f);            computes the conductor of a curve
    18  NSplaces(h,A);         computes non-singular places with given degrees
    19  BrillNoether(D,C);     computes a vector space basis of the linear system L(D)
    20  Weierstrass(P,m,C);    computes the Weierstrass semigroup of C at P up to m
    21  extcurve(d,C);         extends the curve C to an extension of degree d
    22  AGcode_L(G,D,E);       computes the evaluation AG code with divisors G and D
    23  AGcode_Omega(G,D,E);   computes the residual AG code with divisors G and D
    24  prepSV(G,D,F,E);       preprocessing for the basic decoding algorithm
    25  decodeSV(y,K);         decoding of a word with the basic decoding algorithm
     17 Adj_div(f)            computes the conductor of a curve
     18 NSplaces(h,A)         computes non-singular places with given degrees
     19 BrillNoether(D,C)     computes a vector space basis of the linear system L(D)
     20 Weierstrass(P,m,C)    computes the Weierstrass semigroup of C at P up to m
     21 extcurve(d,C)         extends the curve C to an extension of degree d
     22 AGcode_L(G,D,E)       computes the evaluation AG code with divisors G and D
     23 AGcode_Omega(G,D,E)   computes the residual AG code with divisors G and D
     24 prepSV(G,D,F,E)       preprocessing for the basic decoding algorithm
     25 decodeSV(y,K)         decoding of a word with the basic decoding algorithm
    2626
    2727AUXILIARY PROCEDURES:
    28  closed_points(I);      computes the zero-set of a zero-dim. ideal in 2 vars
    29  dual_code(C);          computes the dual code
    30  sys_code(C);           computes an equivalent systematic code
    31  permute_L(L,P);        applies a permutation to a list
     28 closed_points(I)      computes the zero-set of a zero-dim. ideal in 2 vars
     29 dual_code(C)          computes the dual code
     30 sys_code(C)           computes an equivalent systematic code
     31 permute_L(L,P)        applies a permutation to a list
    3232
    3333KEYWORDS:  Weierstrass semigroup; Algebraic Geometry codes;
     
    33453345          which represent the numerator, resp. denominator, of a rational
    33463346          function).@*
    3347           The corresponding rational functions form a vector basis of the
     3347          The corresponding rational functions form a vector space basis of the
    33483348          linear system L(G), G a rational divisor over a non-singular curve.
    33493349NOTE:     The procedure must be called from the ring CURVE[1][2], where
     
    39433943          The intvec G represents a rational divisor (see @ref{BrillNoether}
    39443944          for more details).@*
    3945           The code evaluates the vector basis of L(G) at the rational
     3945          The code evaluates the vector space basis of L(G) at the rational
    39463946          places given by D.
    39473947WARNINGS: G should satisfy @math{ 2*genus-2 < deg(G) < size(D) }, which is
  • Singular/LIB/control.lib

    r1288ef rf32177  
    1 version="$Id: control.lib,v 1.39 2008-10-07 17:55:52 levandov Exp $";
     1version="$Id: control.lib,v 1.40 2009-04-07 09:30:44 seelisch Exp $";
    22category="System and Control Theory";
    33info="
    44LIBRARY:  control.lib     Algebraic analysis tools for System and Control Theory
    55
    6 AUTHORS:  Oleksandr Iena       yena@mathematik.uni-kl.de
    7 @*        Markus Becker        mbecker@mathematik.uni-kl.de
    8 @*        Viktor Levandovskyy  levandov@mathematik.uni-kl.de
     6AUTHORS:  Oleksandr Iena,       yena@mathematik.uni-kl.de
     7@*        Markus Becker,        mbecker@mathematik.uni-kl.de
     8@*        Viktor Levandovskyy,  levandov@mathematik.uni-kl.de
    99
    1010SUPPORT: Forschungsschwerpunkt 'Mathematik und Praxis' (Project of Dr. E. Zerz
    11 and V. Levandovskyy), Uni Kaiserslautern
     11and V. Levandovskyy), University of Kaiserslautern
    1212
    1313MAIN PROCEDURES:
    14   control(R);     analysis of controllability-related properties of R (using Ext modules)
    15   controlDim(R);  analysis of controllability-related properties of R (using dimension)
    16   autonom(R);     analysis of autonomy-related properties of R (using Ext modules)
    17   autonomDim(R);  analysis of autonomy-related properties of R (using dimension)
     14  control(R)     analysis of controllability-related properties of R (using Ext modules)
     15  controlDim(R)  analysis of controllability-related properties of R (using dimension)
     16  autonom(R)     analysis of autonomy-related properties of R (using Ext modules)
     17  autonomDim(R)  analysis of autonomy-related properties of R (using dimension)
    1818
    1919COMPONENT PROCEDURES:
    20   leftKernel(R);       a left kernel of R
    21   rightKernel(R);      a right kernel of R
    22   leftInverse(R);      a left inverse of R
    23   rightInverse(R);     a right inverse of R
    24   colrank(M);          a column rank of M as of matrix
    25   genericity(M);       analysis of the genericity of parameters
    26   canonize(L);         Groebnerification for modules in the output of control or autonomy procs
    27   iostruct(R);         computes an IO-structure of behavior given by a module R
    28   findTorsion(R, I);   generators of the submodule of a module R, annihilated by the ideal I
     20  leftKernel(R)       a left kernel of R
     21  rightKernel(R)      a right kernel of R
     22  leftInverse(R)      a left inverse of R
     23  rightInverse(R)     a right inverse of R
     24  colrank(M)          a column rank of M as of matrix
     25  genericity(M)       analysis of the genericity of parameters
     26  canonize(L)         Groebnerification for modules in the output of control or autonomy procs
     27  iostruct(R)         computes an IO-structure of behavior given by a module R
     28  findTorsion(R, I)   generators of the submodule of a module R, annihilated by the ideal I
    2929
    3030AUXILIARY PROCEDURES:
    31   controlExample(s);   set up an example from the mini database inside of the library
    32   view();              well-formatted output of lists, modules and matrices
     31  controlExample(s)   set up an example from the mini database inside of the library
     32  view()              well-formatted output of lists, modules and matrices
    3333";
    3434
     
    659659RETURN:  list (of strings)
    660660PURPOSE: determine parametric expressions which have been assumed to be non-zero in the process of computing the Groebner basis
    661 NOTE: the output list consists of strings. The first string contains the variables only, whereas each further string contain a single polynomial in parameters.
    662 $* We strongly recommend to switch on the redSB and redTail options.
     661NOTE: the output list consists of strings. The first string contains the variables only, whereas each further string contains
     662      a single polynomial in parameters.
     663@* We strongly recommend to switch on the redSB and redTail options.
    663664@* The procedure is effective with the lift procedure for modules with parameters
    664665EXAMPLE:  example genericity; shows an example
     
    14151416PURPOSE: set up an example from the mini database by initalizing a ring and a module in a ring
    14161417NOTE: in order to see the list of available examples, execute @code{controlExample(\"show\");}
    1417 @* To use ab example, one has to do the following. Suppose one calls the ring, where the example will be activated, A. Then, by executing
     1418@* To use an example, one has to do the following. Suppose one calls the ring, where the example will be activated, A. Then, by executing
    14181419@*  @code{def A = controlExample(\"Antenna\");} and @code{setring A;},
    14191420@* A will become a basering from the example \"Antenna\" with
  • Singular/LIB/general.lib

    r1288ef rf32177  
    33//eric, added absValue 11.04.2002
    44///////////////////////////////////////////////////////////////////////////////
    5 version="$Id: general.lib,v 1.59 2009-01-14 16:07:04 Singular Exp $";
     5version="$Id: general.lib,v 1.60 2009-04-07 09:30:44 seelisch Exp $";
    66category="General purpose";
    77info="
     
    742742NOTE:    If v is given id may be any simply indexed object (e.g. any list or
    743743         string); if v[i]<0 and i<=size(id) v[i] is set internally to i;
    744          entries of v must be pairwise distinct to get a permutation if id.
     744         entries of v must be pairwise distinct to get a permutation id.
    745745         Zero generators of ideal/module are deleted
    746746EXAMPLE: example sort; shows an example
     
    11751175                type(l[3])=typeof(n)
    11761176NOTE:    If n is a long integer (of type number) then the procedure
    1177          finds primefactors <= min(p,32003) but n may as larger as
     1177         finds primefactors <= min(p,32003) but n may be as larger as
    11781178         2147483647 (max. integer representation)
    11791179WARNING: the procedure works for small integers only, just by testing all
  • Singular/LIB/inout.lib

    r1288ef rf32177  
    11// (GMG/BM, last modified 22.06.96)
    22///////////////////////////////////////////////////////////////////////////////
    3 version="$Id: inout.lib,v 1.32 2009-02-23 12:08:39 Singular Exp $";
     3version="$Id: inout.lib,v 1.33 2009-04-07 09:30:44 seelisch Exp $";
    44category="General purpose";
    55info="
     
    566566
    567567proc showrecursive (@@id,poly p,list #)
    568 "USAGE:   showrecursive(id,p[,ord]); id= any object of basering, p= product of
     568"USAGE:   showrecursive(id,p[,ord]); id any object of basering, p= product of
    569569         variables and ord=string (any allowed ordstr)
    570570DISPLAY: display 'id' in a recursive format as a polynomial in the variables
  • Singular/LIB/poly.lib

    r1288ef rf32177  
    11///////////////////////////////////////////////////////////////////////////////
    2 version="$Id: poly.lib,v 1.51 2009-02-20 18:50:55 Singular Exp $";
     2version="$Id: poly.lib,v 1.52 2009-04-07 09:30:44 seelisch Exp $";
    33category="General purpose";
    44info="
     
    259259COMPUTE: rank of module presented by M in case it is free.
    260260         By definition this is vdim(coker(M)/m*coker(M)) if coker(M)
    261          is free, where m = maximal ideal of the variables of the
    262          basering and M is considered as matrix.
     261         is free, where m is the maximal ideal of the variables of the
     262         basering and M is considered to be a matrix.
    263263         (the 0-module is free of rank 0)
    264264RETURN:  rank of coker(M) if coker(M) is free and -1 else;
     
    361361         corresponding component of id, independent of ring ordering
    362362         (maxdeg of each var is 1).
    363          Of type int if id is of type poly, of type intmat else
    364 NOTE:    proc maxdeg1 returns an integer, the absolute maximum; moreover, it has
    365          an option for computing weighted degrees
     363         Of type int, if id is of type poly; of type intmat otherwise
    366364SEE ALSO: maxdeg1
    367365EXAMPLE: example maxdeg; shows examples
     
    498496         (mindeg of each variable is 1) of type int if id of type poly, else
    499497         of type intmat.
    500 NOTE:    proc mindeg1 returns one integer, the absolute minimum; moreover it
    501          has an option for computing weighted degrees.
     498SEE ALSO: mindeg1
    502499EXAMPLE: example mindeg; shows examples
    503500"
     
    630627proc normalize (id)
    631628"USAGE:   normalize(id);  id=poly/vector/ideal/module
    632 RETURN:  object of same type,s
    633          each element is normalized to make its leading coefficient equal to 1
     629RETURN:  object of same type
     630         each element is normalized with leading coefficient equal to 1
    634631EXAMPLE: example normalize; shows an example
    635632"
  • Singular/LIB/redcgs.lib

    r1288ef rf32177  
    11//////////////////////////////////////////////////////////////////////////////
    2 version="$Id: redcgs.lib,v 1.4 2009-02-26 14:07:04 Singular Exp $";
     2version="$Id: redcgs.lib,v 1.5 2009-04-07 09:30:44 seelisch Exp $";
    33category="General purpose";
    44info="
     
    32533253          The elements of the list T computed by mrcgs are lists representing
    32543254          a rooted tree.
    3255           Each element has as the two first entries with the following content:
     3255          Each element has as the two first entries with the following content:@*
    32563256           [1]: The label (intvec) representing the position in the rooted
    32573257                tree:  0 for the root (and this is a special element)
     
    35963596          The elements of the list T computed by rcgs are lists representing
    35973597          a rooted tree.
    3598           Each element has as the two first entries with the following content:
     3598          Each element has as the two first entries with the following content:@*
    35993599           [1]: The label (intvec) representing the position in the rooted
    36003600                tree:  0 for the root (and this is a special element)
     
    37783778          The elements of the list T computed by crcgs are lists representing
    37793779          a rooted tree.
    3780           Each element has as the two first entries with the following content:
     3780          Each element has as the two first entries with the following content:@*
    37813781           [1]: The label (intvec) representing the position in the rooted
    37823782                tree:  0 for the root (and this is a special element)
Note: See TracChangeset for help on using the changeset viewer.