Changeset f4490f5 in git


Ignore:
Timestamp:
Sep 30, 2010, 10:05:15 PM (14 years ago)
Author:
Viktor Levandovskyy <levandov@…>
Branches:
(u'fieker-DuVal', '117eb8c30fc9e991c4decca4832b1d19036c4c65')(u'spielwiese', 'b52fc4b2495505785981d640dcf7eb3e456778ef')
Children:
9f5ebf25535e7f3b32e56ffc7635be3bcf1c05bf
Parents:
0a2f7deb9cde7da147b192a31ec765e4f3923a09
Message:
*levandov: again checklib

git-svn-id: file:///usr/local/Singular/svn/trunk@13357 2c84dea3-7e68-4137-9b89-c4e89433aadc
File:
1 edited

Legend:

Unmodified
Added
Removed
  • Singular/LIB/dmodvar.lib

    r0a2f7d rf4490f5  
    99       Jorge Martin-Morales,   jorge@unizar.es
    1010
    11 THEORY: Let K be a field of characteristic 0. Given a polynomial ring R = K[x_1,...,x_n] and
     11OVERVIEW:
     12Theory: Let K be a field of characteristic 0. Given a polynomial ring R = K[x_1,...,x_n] and
    1213@* a set of polynomial f_1,..., f_r in R, define F = f_1 * ... * f_r and F^s:=f_1^s_1*...*f_r^s_r
    1314@* for symbolic discrete (that is shiftable) variables s_1,..., s_r.
    14 @* The module R[1/F]*F^s has a structure of a D<S>-module, where D<S> := D(R) tensored with S over K, where
     15@* The module R[1/F]*F^s has a structure of a D<S>-module, where
     16D<S> := D(R) tensored with S over K, where
    1517@*   - D(R) is an n-th Weyl algebra K<x_1,...,x_n,d_1,...,d_n | d_j x_j = x_j d_j +1>
    1618@*   - S is the universal enveloping algebra of gl_r, generated by s_{ij}, where s_{ii}=s_i.
     
    2325@*     sum(k=1 to k=r) P_k*f_k*F^s = bs*F^s holds in R[1/F]*F^s.
    2426
    25 REFERENCES:
     27References:
    2628  (BMS06) Budur, Mustata, Saito: Bernstein-Sato polynomials of arbitrary varieties (2006).
    2729  (ALM09) Andres, Levandovskyy, Martin-Morales : Principal Intersection and Bernstein-Sato Polynomial of an Affine Variety (2009).
     
    487489}
    488490
    489 proc makeIF (ideal F, list #)
     491static proc makeIF (ideal F, list #)
    490492"USAGE:  makeIF(F [,ORD]);  F an ideal, ORD an optional string
    491493RETURN:  ring
Note: See TracChangeset for help on using the changeset viewer.