LIB "tst.lib"; tst_init(); LIB "multigrading.lib"; ring R = 0, (x, y, z), dp; // Weights of variables intmat M[3][3] = 1, 0, 0, 0, 1, 0, 0, 0, 1; // GradingGroup: intmat L[3][2] = 1, 1, 1, 3, 1, 5; // attaches M & L to R (==basering): setBaseMultigrading(M, L); // Grading: Z^3/L // Weights are accessible via "getVariableWeights()": getVariableWeights(); // Test all possible usages: (getVariableWeights() == M) && (getVariableWeights(R) == M) && (getVariableWeights(basering) == M); // Grading group is accessible via "getLattice()": getLattice(); // Test all possible usages: (getLattice() == L) && (getLattice(R) == L) && (getLattice(basering) == L); // And its hermite NF via getLattice("hermite"): getLattice("hermite"); // Test all possible usages: intmat H = hermiteNormalForm(L); (getLattice("hermite") == H) && (getLattice(R, "hermite") == H) && (getLattice(basering, "hermite") == H); kill L, M; // ----------- isomorphic multigrading -------- // // Weights of variables intmat M[2][3] = 1, -2, 1, 1, 1, 0; // Torsion: intmat L[2][1] = 0, 2; // attaches M & L to R (==basering): setBaseMultigrading(M, L); // Grading: Z + (Z/2Z) // Weights are accessible via "getVariableWeights()": getVariableWeights() == M; // Torsion is accessible via "getLattice()": getLattice() == L; kill L, M; // ----------- extreme case ------------ // // Weights of variables intmat M[1][3] = 1, -1, 10; // Torsion: intmat L[1][1] = 0; // attaches M & L to R (==basering): setBaseMultigrading(M); // Grading: Z^3 // Weights are accessible via "getVariableWeights()": getVariableWeights() == M; // Torsion is accessible via "getLattice()": getLattice() == L; tst_status(1);$