/////////////////////////////////////////////////////////////////////////////// version="$Id: ncdecomp.lib,v 1.13 2007-11-28 16:36:46 motsak Exp $"; category="Noncommutative"; info=" LIBRARY: ncdecomp.lib Decomposition of a module into its central characters AUTHORS: Viktor Levandovskyy, levandov@mathematik.uni-kl.de. OVERVIEW: This library presents algorithms for the central character decomposition of a module, i.e. a decomposition into generalized weight modules with respect to the center. Based on ideas of O. Khomenko and V. Levandovskyy (see the article [L2] in the References for details). PROCEDURES: CentralQuot(M,G); central quotient M:G, CentralSaturation(M,T); central saturation ((M:T):...):T) ( = M:T^{\infty}), CenCharDec(I,C); decomposition of I into central characters w.r.t. C IntersectWithSub(M,Z); intersection of M with the subalgebra, generated by pairwise commutative elements of Z. "; LIB "ncalg.lib"; LIB "primdec.lib"; /////////////////////////////////////////////////////////////////////////////// static proc CharKernel(list L, int i) { // compute \cup L[j], j!=i int sL = size(L); if ( (i<=0) || (i>sL)) { return(0); } int j; list Li; if (i ==1 ) { Li = L[2..sL]; } if (i ==sL ) { Li = L[1..sL-1]; } if ( (i>1) && (i < sL)) { Li = L[1..i-1]; for (j=i+1; j<=sL; j++) { Li[j-1] = L[j]; } } // print("intersecting kernels..."); module Cres = intersect(Li[1..size(Li)]); return(Cres); } /////////////////////////////////////////////////////////////////////////////// static proc CentralQuotPoly(module M, poly g) { // here an elimination of components should be used ! int N=nrows(M); // M = A^N /I_M module @M; int i,j; for(i=1; i<=N; i++) { @M=@M,g*gen(i); } @M = simplify(@M,2); @M = @M,M; module S = syz(@M); matrix s = S; module T; vector t; for(i=1; i<=ncols(s); i++) { t = 0*gen(N); for(j=1; j<=N; j++) { t = t + s[j,i]*gen(j); } T[i] = t; } T = simplify(T,2); return(T); } /////////////////////////////////////////////////////////////////////////////// static proc MyIsEqual(module A, module B) { // both A and B are submodules of free module option(redSB); option(redTail); if (attrib(A,"isSB")!=1) { A = std(A); } if (attrib(B,"isSB")!=1) { B = std(B); } int ANSWER = 1; if ( ( ncols(A) == ncols(B) ) && ( nrows(A) == nrows(B) ) ) { module @AB = A-B; @AB = simplify(@AB,2); if (@AB[1]!=0) { ANSWER = 0; } } else { ANSWER = 0; } return(ANSWER); } /////////////////////////////////////////////////////////////////////////////// proc CentralQuot(module I, ideal G) "USAGE: CentralQuot(M, G), M a module, G an ideal ASSUME: G is an ideal in the center RETURN: module PURPOSE: compute the central quotient M:G THEORY: for an ideal G of the center of an algebra and a submodule M of A^n, the central quotient of M by G is defined to be @* M:G := { v in A^n | z*v in M, for all z in G }. NOTE: the output module is not necessarily given in a Groebner basis SEE ALSO: CentralSaturation, CenCharDec EXAMPLE: example CentralQuot; shows examples "{ int i; list @L; for(i=1; i<=size(G); i++) { @L[i] = CentralQuotPoly(I,G[i]); } module @I = intersect(@L[1..size(G)]); if (nrows(@I)==1) { @I = ideal(@I); } return(@I); } example { "EXAMPLE:"; echo = 2; option(returnSB); def a = makeUsl2(); setring a; ideal I = e3,f3,h3-4*h; I = std(I); poly C=4*e*f+h^2-2*h; ideal G = (C-8)*(C-24); ideal R = CentralQuot(I,G); R; } /////////////////////////////////////////////////////////////////////////////// proc CentralSaturation(module M, ideal T) "USAGE: CentralSaturation(M, T), for a module M and an ideal T ASSUME: T is an ideal in the center RETURN: module PURPOSE: compute the central saturation of M by T, that is M:T^{\infty}, by repititive application of @code{CentralQuot} NOTE: the output module is not necessarily a Groebner basis SEE ALSO: CentralQuot, CenCharDec EXAMPLE: example CentralSaturation; shows examples "{ option(redSB); option(redTail); option(returnSB); module Q=0; module S=M; while ( !MyIsEqual(Q,S) ) { Q = CentralQuot(S, T); S = CentralQuot(Q, T); } if (nrows(Q)==1) { Q = ideal(Q); } // Q = std(Q); return(Q); } example { "EXAMPLE:"; echo = 2; option(returnSB); def a = makeUsl2(); setring a; ideal I = e3,f3,h3-4*h; I = std(I); poly C=4*e*f+h^2-2*h; ideal G = C*(C-8); ideal R = CentralSaturation(I,G); R=std(R); vdim(R); R; } /////////////////////////////////////////////////////////////////////////////// proc CenCharDec(module I, def #) "USAGE: CenCharDec(I, C); I a module, C an ideal ASSUME: C consists of generators of the center RETURN: a list L, where each entry consists of three records (if a finite decomposition exists) @* L[*][1] ('ideal' type), the central character as the maximal ideal in the center, @* L[*][2] ('module' type), the Groebner basis of the weight module, corresponding to the character in L[*][1], @* L[*][3] ('int' type) is the vector space dimension of the weight module (-1 in case of infinite dimension); PURPOSE: compute a finite decomposition of C into central characters or determine that there is no finite decomposition NOTE: actual decomposition is a sum of L[i][2] above; @* some modules have no finite decomposition (in such case one gets warning message) SEE ALSO: CentralQuot, CentralSaturation EXAMPLE: example CenCharDec; shows examples " { list Center; if (typeof(#) == "ideal") { int cc; ideal tmp = ideal(#); for (cc=1; cc<=size(tmp); cc++) { Center[cc] = tmp[cc]; } kill tmp; } if (typeof(#) == "list") { Center = #; } // M = A/I //1. Find the Zariski closure of Supp_Z M // J = Ann_M 1 == I // J \cap Z: option(redSB); option(redTail); option(returnSB); def @A = basering; setring @A; int sZ=size(Center); int i,j; poly t=1; for(i=1; i<=nvars(@A); i++) { t=t*var(i); } ring @Z=0,(@z(1..sZ)),dp; // @Z; def @ZplusA = @A+@Z; setring @ZplusA; // @ZplusA; ideal I = imap(@A,I); list Center = imap(@A,Center); poly t = imap(@A,t); ideal @Ker; for(i=1; i<=sZ; i++) { @Ker[i]=@z(i) - Center[i]; } @Ker = @Ker,I; ideal @JcapZ = eliminate(@Ker,t); // do not forget parameters of a basering! string strZ="ring @@Z=("+charstr(@A)+"),(@z(1.."+string(sZ)+")),dp;"; // print(strZ); execute(strZ); setring @@Z; ideal @JcapZ = imap(@ZplusA,@JcapZ); @JcapZ = std(@JcapZ); // @JcapZ; int sJ = vdim(@JcapZ); if (sJ==-1) { "There is no finite decomposition"; return(0); } // print(@JcapZ); // 2. compute the min.ass.primes of the ideal in the center list @L = minAssGTZ(@JcapZ); int sL = size(@L); // print("etL:"); // @L; // exception: is sL==1, the whole ideal has unique cen.char if (sL ==1) { setring @A; map @M = @@Z,Center[1..size(Center)]; list L = @M(@L); list @R; @R[1] = L[1]; if (nrows(@R[1])==1) { @R[1] = ideal(@R[1]); } @R[2] = I; if (nrows(@R[2])==1) { @R[2] = ideal(@R[2]); } @R[2] = std(@R[2]); @R[3] = vdim(@R[2]); return(@R); } list @CharKer; for(i=1; i<=sL; i++) { @L[i] = std(@L[i]); } // 3. compute the intersections of characters for(i=1; i<=sL; i++) { @CharKer[i] = CharKernel(@L,i); } // print("Charker:"); // @CharKer; // 4. Go back to the algebra and compute central saturations setring @A; map @M = @@Z,Center[1..size(Center)]; list L = @M(@CharKer); list R,@R; for(i=1; i<=sL; i++) { @R[1] = L[i]; if (nrows(@R[1])==1) { @R[1] = ideal(@R[1]); } @R[2] = CentralSaturation(I,L[i]); if (nrows(@R[2])==1) { @R[2] = ideal(@R[2]); } @R[2] = std(@R[2]); @R[3] = vdim(@R[2]); R[i] = @R; } return(R); } example { "EXAMPLE:"; echo = 2; option(returnSB); def a = makeUsl2(); // U(sl_2) in characteristic 0 setring a; ideal I = e3,f3,h3-4*h; I = twostd(I); // two-sided ideal generated by I vdim(I); // it is finite-dimensional ideal Cn = 4*e*f+h^2-2*h; // the only central element list T = CenCharDec(I,Cn); T; // consider another example ideal J = e*f*h; CenCharDec(J,Cn); } /////////////////////////////////////////////////////////////////////////////// proc IntersectWithSub (ideal M, def #) "USAGE: IntersectWithSub(M,Z), M an ideal, Z an ideal ASSUME: Z consists of pairwise commutative elements RETURN: ideal, of two-sided generators, not a Groebner basis PURPOSE: computes an intersection of M with the subalgebra, generated by Z NOTE: usually Z consists of generators of the center EXAMPLE: example IntersectWithSub; shows an example " { ideal Z; if (typeof(#) == "list") { int cc; list tmp = #; for (cc=1; cc<=size(tmp); cc++) { Z[cc] = tmp[cc]; } kill tmp; } if (typeof(#) == "ideal") { Z = #; } // returns a submodule of M, equal to M \cap Z // correctness: Z should consists of pairwise // commutative elements int nz = size(Z); int i,j; poly p; for (i=1; i