// $Id: homolog.lib,v 1.3 1997-05-06 13:08:33 Singular Exp $ //(BM/GMG, last modified 22.06.96) /////////////////////////////////////////////////////////////////////////////// LIBRARY: homolog.lib PROCEDURES FOR HOMOLOGICAL ALGEBRA cup(M); cup: Ext^1(M',M') x Ext^1() --> Ext^2() cupproduct(M,N,P,p,q); cup: Ext^p(M',N') x Ext^q(N',P') --> Ext^p+q(M',P') Ext_R(k,M); Ext^k(M',R), M module, R basering, M'=coker(M) Ext(k,M,N); Ext^k(M',N'), M,N modules, M'=coker(M), N'=coker(N) Hom(M,N); Hom(M',N'), M,N modules, M'=coker(M), N'=coker(N) homology(A,B,M,N) ker(B)/im(A), homology of complex R^k--A->M'--B->N' kernel(A,M,N); ker(M'--A->N') M,N modules, A matrix kohom(A,k); Hom(R^k,A), A matrix over basering R kontrahom(A,k); Hom(A,R^k), A matrix over basering R LIB "general.lib"; LIB "deform.lib"; LIB "matrix.lib"; LIB "poly.lib"; /////////////////////////////////////////////////////////////////////////////// proc cup (module M,list #) USAGE: cup(M,[,any,any]); M=module COMPUTE: cup-product Ext^1(M',M') x Ext^1(M',M') ---> Ext^2(M',M'), where M':=R^m/M, if M in R^m, R basering (i.e. M':=coker(matrix(M))) in case of a second argument: symmetrized cup-product ASSUME: all Ext's are finite dimensional RETURN: matrix of the associated linear map, i.e. the columns of present the coordinates of b_i & b_j (resp. (1/2)(b_i & b_j + b_j & b_i) in the symmetric version) with respect to a kbase of Ext^2, (where b_1,b_2,... is a kbase of Ext^1 and & denotes cup product) in case of a third argument return a list: L[1] = matrix see above (and symmetric case) L[2] = matrix of kbase of Ext^1 L[3] = matrix of kbase of Ext^2 NOTE: printlevel >=1; shows what is going on printlevel >=2; shows result in another representation For computing cupproduct of M itself, apply proc to syz(M)! EXAMPLE: example cup; shows examples { //---------- initialization --------------------------------------------------- int i,j,k,f0,f1,f2,f3,e1,e2; module M1,M2,A,B,C,ker,ima,ext1,ext2,ext10,ext20; matrix cup[1][0]; matrix kb1,lift1,kb2,mA,mB,mC; ideal tes1,tes2,null; int p = printlevel-voice+3; // p=printlevel+1 (default: p=1) //----------------------------------------------------------------------------- //take a resolution of M<--F(0)<--- ... <---F(3) //apply Hom(-,M) and compute the Ext's //----------------------------------------------------------------------------- list resM = res(M,3); M1 = resM[2]; M2 = resM[3]; f0 = nrows(M); f1 = ncols(M); f2 = ncols(M1); f3 = ncols(M2); tes1 = simplify(ideal(M),10); tes2=simplify(ideal(M1),10); if ((tes1[1]*tes2[1]==0) or (tes1[1]==1) or (tes2[1]==1)) { dbprint(p,"// Ext == 0 , hence 'cup' is the zero-map"); return(@cup); } //------ compute Ext^1 -------------------------------------------------------- B = kohom(M,f2); A = kontrahom(M1,f0); C = intersect(A,B); C = reduce(C,std(null));C = simplify(C,10); ker = lift(A,C)+syz(A); ima = kohom(M,f1); ima = ima + kontrahom(M,f0); ext1 = modulo(ker,ima); ext10 = std(ext1); e1 = vdim(ext10); dbprint(p-1,"// vdim (Ext^1) = "+string(e1)); if (e1 < 0) { "// Ext^1 not of finite dimension"; return(cup); } kb1 = kbase(ext10); kb1 = matrix(ker)*kb1; dbprint(p-1,"// kbase of Ext^1(M,M)", "// - the columns present the kbase elements in Hom(F(1),F(0))", "// - F(*) a free resolution of M",kb1); //------ compute the liftings of Ext^1 ---------------------------------------- mC = matrix(A)*kb1; lift1 =lift(B,mC); dbprint(p-1,"// lift kbase of Ext^1:", "// - the columns present liftings of kbase elements into Hom(F(2),F(1))", "// - F(*) a free resolution of M ",lift1); //------ compute Ext^2 ------------------------------------------------------- B = kohom(M,f3); A = kontrahom(M2,f0); C = intersect(A,B); C = reduce(C,std(null));C = simplify(C,10); ker = lift(A,C)+syz(A); ima = kohom(M,f2); ima = ima + kontrahom(M1,f0); ext2 = modulo(ker,ima); ext20= std(ext2); e2 = vdim(ext20); if (e2<0) { "// Ext^2 not of finite dimension"; return(cup); } dbprint(p-1,"// vdim (Ext^2) = "+string(e2)); kb2 = kbase(ext20); kb2 = matrix(ker)*kb2; dbprint(p-1,"// kbase of Ext^2(M,M)", "// - the columns present the kbase elements in Hom(F(2),F(0))", "// - F(*) is a a free resolution of M ",kb2); //------- compute: cup-products of base-elements ----------------------------- for (i=1;i<=e1;i=i+1) { for (j=1;j<=e1;j=j+1) { mA = matrix(ideal(lift1[j]),f1,f2); mB = matrix(ideal(kb1[i]),f0,f1); mC = mB*mA; if (size(#)==0) { //non symmestric mC = matrix(ideal(mC),f0*f2,1); cup= concat(cup,mC); } else //symmetric version { if (j>=i) { if (j>i) { mA = matrix(ideal(lift1[i]),f1,f2); mB = matrix(ideal(kb1[j]),f0,f1); mC = mC+mB*mA;mC=(1/2)*mC; } mC = matrix(ideal(mC),f0*f2,1); cup= concat(cup,mC); } } } } dbprint(p-1,"// matrix of cup-products (in Ext^2)",cup,"////// end level 2 //////"); //------- comptute: presentation of base-elements ----------------------------- cup = lift(ker,cup); cup = lift_kbase(cup,ext20); if( p>2 ) { "// the associated matrices of the bilinear mapping 'cup' "; "// corresponding to the kbase elements of Ext^2(M,M) are shown,"; "// i.e. the rows of the final matrix are written as matrix of"; "// a bilinear form on Ext^1 x Ext^1"; matrix BL[e1][e1]; for (k=1;k<=e2;k=k+1) { "//_____"+string(k)+". component:"; for (i=1;i<=e1;i=i+1) { for (j=1;j<=e1;j=j+1) { if (size(#)==0) { BL[i,j]=cup[k,j+e1*(i-1)]; } else { if (i<=j) { BL[i,j]=cup[k,j+e1*(i-1)-binomial(i,2)]; BL[j,i]=BL[i,j]; } } } } print(BL); } "////// end level 3 //////"; } if (size(#)>2) { return(cup,kb1,kb2);} else {return(cup);} } example {"EXAMPLE"; echo=2; int p = printlevel; ring rr = 32003,(x,y,z),(dp,C); ideal I = x4+y3+z2; qring o = std(I); module M = [x,y,0,z],[y2,-x3,z,0],[z,0,-y,-x3],[0,z,x,-y2]; print(cup(M)); print(cup(M,1)); // 2nd EXAMPLE (shows what is going on) printlevel = 3; ring r = 0,(x,y),(dp,C); ideal i = x2-y3; qring q = std(i); module M = [-x,y],[-y2,x]; print(cup(M)); printlevel = p; } /////////////////////////////////////////////////////////////////////////////// proc cupproduct (module M,N,P,int p,q,list #) USAGE: cupproduct(M,N,P,p,q[,any]); M,N,P modules, p,q integers COMPUTE: cup-product Ext^p(M',N') x Ext^q(N',P') ---> Ext^p+q(M',P') where M':=R^m/M, if M in R^m, R basering (i.e. M':=coker(matrix(M))) ASSUME: all Ext's are of finite dimension RETURN: matrix of the associated linear map Ext^p(tensor)Ext^q-->Ext^p+q i.e. the columnes of present the coordinates of the cup products (b_i & c_j) with respect to a kbase of Ext^p+q (b_i resp. c_j are choosen bases of Ext^p resp. Ext^q) in case of a 6th argument: return a list L[1] = matrix (see above) L[2] = matrix of kbase of Ext^p(M',N') L[3] = matrix of kbase of Ext^q(N',P') L[4] = matrix of kbase of Ext^p+q(N',P') NOTE: printlevel >=1; shows what is going on printlevel >=2; shows result in another representation For computing cupproduct of M,N itself, apply proc to syz(M),syz(N)! EXAMPLE: example cupproduct; shows examples { //---------- initialization --------------------------------------------------- int e1,e2,e3,i,j,k,f0,f1,f2; module M1,M2,N1,N2,P1,P2,A,B,C,ker,ima,extMN,extMN0,extMP, extMP0,extNP,extNP0; matrix cup[1][0]; matrix kbMN,kbMP,kbNP,lift1,mA,mB,mC; ideal test1,test2,null; int pp = printlevel-voice+3; // pp=printlevel+1 (default: p=1) //----------------------------------------------------------------------------- //compute resolutions of M and N // M<--F(0)<--- ... <---F(p+q+1) // N<--G(0)<--- ... <---G(q+1) //----------------------------------------------------------------------------- list resM = res(M,p+q+1); M1 = resM[p]; M2 = resM[p+1]; list resN = res(N,q+1); N1 = resN[q]; N2 = resN[q+1]; P1 = resM[p+q]; P2 = resM[p+q+1]; //-------test: Ext==0?--------------------------------------------------------- test1 = simplify(ideal(M1),10); test2 = simplify(ideal(N),10); if (test1[1]==0) { dbprint(pp,"//Ext(M,N)=0");return(cup); } test1 = simplify(ideal(N1),10); test2 = simplify(ideal(P),10); if (test1[1]==0) { dbprint(pp,"//Ext(N,P)=0");return(cup); } test1 = simplify(ideal(P1),10); if (test1[1]==0) { dbprint(pp,"//Ext(M,P)=0");return(cup); } //------ compute kbases of Ext's --------------------------------------------- //------ Ext(M,N) test1 = simplify(ideal(M2),10); if (test1[1]==0) { ker = freemodule(ncols(M1)*nrows(N));} else { A = kontrahom(M2,nrows(N)); B = kohom(N,ncols(M2)); C = intersect(A,B); C = reduce(C,std(ideal(0)));C=simplify(C,10); ker = lift(A,C)+syz(A); } ima = kohom(N,ncols(M1)); A = kontrahom(M1,nrows(N)); ima = ima+A; extMN = modulo(ker,ima); extMN0= std(extMN); e1 = vdim(extMN0); dbprint(pp-1,"// vdim Ext(M,N) = "+string(e1)); if (e1 < 0) { "// Ext(M,N) not of finite dimension"; return(cup); } kbMN = kbase(extMN0); kbMN = matrix(ker)*kbMN; dbprint(pp-1,"// kbase of Ext^p(M,N)", "// - the columns present the kbase elements in Hom(F(p),G(0))", "// - F(*),G(*) are free resolutions of M and N",kbMN); //------- Ext(N,P) test1 = simplify(ideal(N2),10); if (test1[1]==0) { ker = freemodule(ncols(N1)*nrows(P)); } else { A = kontrahom(N2,nrows(P)); B = kohom(P,ncols(N2)); C = intersect(A,B); C = reduce(C,std(ideal(0)));C=simplify(C,10); ker = lift(A,C)+syz(A); } ima = kohom(P,ncols(N1)); A = kontrahom(N1,nrows(P)); ima = ima+A; extNP = modulo(ker,ima); extNP0= std(extNP); e2 = vdim(extNP0); dbprint(pp-1,"// vdim Ext(N,P) = "+string(e2)); if (e2 < 0) { "// Ext(N,P) not of finite dimension"; return(cup); } kbNP = kbase(extNP0); kbNP = matrix(ker)*kbNP; dbprint(pp-1,"// kbase of Ext(N,P):",kbNP, "// kbase of Ext^q(N,P)", "// - the columns present the kbase elements in Hom(G(q),H(0))", "// - G(*),H(*) are free resolutions of N and P",kbNP); //------ Ext(M,P) test1 = simplify(ideal(P2),10); if (test1[1]==0) { ker = freemodule(ncols(P1)*nrows(P)); } else { A = kontrahom(P2,nrows(P)); B = kohom(P,ncols(P2)); C = intersect(A,B); C = reduce(C,std(ideal(0)));C=simplify(C,10); ker = lift(A,C)+syz(A); } ima = kohom(P,ncols(P1)); A = kontrahom(P1,nrows(P)); ima = ima+A; extMP = modulo(ker,ima); extMP0= std(extMP); e3 = vdim(extMP0); dbprint(pp-1,"// vdim Ext(M,P) = "+string(e3)); if (e3 < 0) { "// Ext(M,P) not of finite dimension"; return(cup); } kbMP = kbase(extMP0); kbMP = matrix(ker)*kbMP; dbprint(pp-1,"// kbase of Ext^p+q(M,P)", "// - the columns present the kbase elements in Hom(F(p+q),H(0))", "// - F(*),H(*) are free resolutions of M and P",kbMP); //----- lift kbase of Ext(M,N) ------------------------------------------------ lift1 = kbMN; for (i=1;i<=q;i=i+1) { mA = kontrahom(resM[p+i],nrows(resN[i])); mB = kohom(resN[i],ncols(resM[p+i])); lift1 = lift(mB,mA*lift1); } dbprint(pp-1,"// lifting of kbase of Ext^p(M,N)", "// - the columns present the lifting of kbase elements in Hom(F(p+q),G(q))",lift1); //------- compute: cup-products of base-elements ----------------------------- f0 = nrows(P); f1 = ncols(N1); f2 = ncols(resM[p+q]); for (i=1;i<=e1;i=i+1) { for (j=1;j<=e2;j=j+1) { mA = matrix(ideal(lift1[j]),f1,f2); mB = matrix(ideal(kbMP[i]),f0,f1); mC = mB*mA; mC = matrix(ideal(mC),f0*f2,1); cup= concat(cup,mC); } } dbprint(pp-1,"// matrix of cup-products (in Ext^p+q)",cup,"////// end level 2 //////"); //------- comptute: presentation of base-elements ----------------------------- cup = lift(ker,cup); cup = lift_kbase(cup,extMP0); //------- special output ------------------------------------------------------ if (pp>2) { "// the associated matrices of the bilinear mapping 'cup' "; "// corresponding to the kbase elements of Ext^p+q(M,P) are shown,"; "// i.e. the rows of the final matrix are written as matrix of"; "// a bilinear form on Ext^p x Ext^q"; matrix BL[e1][e2]; for (k=1;k<=e3;k=k+1) { "//----"+string(k)+". component:"; for (i=1;i<=e1;i=i+1) { for (j=1;j<=e2;j=j+1) { BL[i,j]=cup[k,j+e1*(i-1)]; } } print(BL); } "////// end level 3 //////"; } if (size(#)) { return(cup,kbMN,kbNP,kbMP);} else { return(cup); } } example {"EXAMPLE"; echo=2; int p = printlevel; ring rr = 32003,(x,y,z),(dp,C); ideal I = x4+y3+z2; qring o = std(I); module M = [x,y,0,z],[y2,-x3,z,0],[z,0,-y,-x3],[0,z,x,-y2]; print(cupproduct(M,M,M,1,3)); printlevel = 3; list l = (cupproduct(M,M,M,1,3,"any")); show(l[1]);show(l[2]); printlevel = p; } /////////////////////////////////////////////////////////////////////////////// proc Ext_R (intvec v, module M, list #) USAGE: Ext_R(v,M[,p]); v=int/intvec , M=module, p=int COMPUTE: A presentation of Ext^k(M',R); for k=v[1],v[2],..., M'=coker(M). Let ...--> F2 --> F1 --M-> F0-->M'-->0 be a free resolution of M'. If 0 <-- F0* <-A1-- F1* <-A2-- F2* <-A3--... denotes the dual sequence, Fi*=Hom(Fi,R), then Ext^k = ker(Ak)/im(Ak+1) is presented as in the following exact sequences: Fk-1* <-Ak-- Fk* <-syz(Ak)-- R^p Fk*/im(Ak+1) <-syz(Ak)-- R^p <-Ext^k-- R^q Hence Ext^k=modulo(syz(Ak),Ak+1) presents Ext^k(M',R); RETURN: Ext^k, of type module, a presentation of Ext^k(M',R) if v is of type int, resp. a list of Ext^k (k=v[1],v[2],...) if v is of type intvec. In case of a third argument of type int return a list: [1] = module Ext^k/list of Ext^k [2] = SB of Ext^k/list of SB of Ext^k [3] = matrix/list of matrices, each representing kbase of Ext^k (if finite dimensional) DISPLAY: printlevel >=0: degree of Ext^k for each k (default) printlevel >=1: Ak, Ak+1 and kbase of Ext^k in Fk* NOTE: In order to compute Ext^k(M,R) use the command Ext_R(k,syz(M)); or the 2 commands: list L=mres(M,2); Ext_R(k,L[2]); EXAMPLE: example Ext_R; shows examples { // In case M is known to be a SB, set attrib(M,"isSB",1); in order to // avoid unnecessary SB computations //------------ initialisation ------------------------------------------------- module m1,m2,ret,ret0; matrix ker,kb; list L1,L2,L3,L,resl,K; int k,max,ii,t1,t2; int s = size(v); intvec v1 = sort(v)[1]; max = v1[s]; // the maximum integer occuring in intvec v int p = printlevel-voice+3; // p=printlevel+1 (default: p=1) // --------------- Variante mit sres for( ii=1; ii<=size(#); ii++ ) { t2=1; // return a list if t2=1 if( typeof(#[ii])=="string" ) { if ( #[ii]=="sres" ) { t1=1; t2=0; } // use sres instead of mres if t1=1 } } //----------------- compute resolution of coker(M) ---------------------------- if( max<0 ) { dbprint(p,"// Ext^i=0 for i<0!"); return([1]); } if( t1==1 ) { if( attrib(M,"isSB")==0 ) { M=std(M); } resl = sres(M,max+1); } else { resl = mres(M,max+1); } for( ii=1; ii<=s; ii++ ) { //----------------- apply Hom(_,R) at k-th place ----------------------------- k=v[ii]; if( k<0 ) // Ext^k=0 for negative k { dbprint(p-1,"// Ext^i=0 for i<0!"); ret = gen(1); ret0 = std(ret); L1[ii] = ret; L2[ii] = ret0; L3[ii] = matrix(kbase(ret0)); dbprint(p,"// degree of Ext^"+string(k)+":"); if( p>=0 ) { degree(ret0);"";} } else { m2 = transpose(resl[k+1]); if( k==0 ) { m1=0*gen(nrows(m2)); } else { m1 = transpose(resl[k]); } //----------------- presentation of ker(m2)/im(m1) ---------------------------- ker = syz(m2); ret = modulo(ker,m1); dbprint(p-1,"// Computing Ext^"+string(k)+":", "// Let 0<--coker(M)<--F0<--F1<--F2<--... be a resolution of M,", "// then F"+string(k)+"*-->F"+string(k+1)+"* is given by:",m2, "// and F"+string(k-1)+"*-->F"+string(k)+"* is given by:",m1,""); ret0 = std(ret); dbprint(p,"// degree of Ext^"+string(k)+":"); if( p>0 ) { degree(ret0);"";} if( t2 ) { if( vdim(ret0)>=0 ) { kb = kbase(ret0); if ( size(ker)!=0 ) { kb = matrix(ker)*kb; } dbprint(p-1, "// columns of matrix are kbase of Ext^"+string(k)+" in F"+string(k)+"*:",kb,""); L3[ii] = kb; } L2[ii] = ret0; } L1[ii] = ret; } } if( t2 ) { if( s>1 ) { L = L1,L2,L3; return(L); } else { L = ret,ret0,kb; return(L); } } else { if( s>1 ) { return(L1); } else { return(ret); } } } example {"EXAMPLE:"; echo=2; int p = printlevel; printlevel = 1; ring r = 0,(x,y,z),dp; ideal i = x2y,y2z,z3x; module E = Ext_R(1,i); //computes Ext^1(r/i,r) is_zero(E); module m = [x],[0,y]; list L = Ext_R(2..3,m); //computes Ext^i(r^2/m,r), i=2,3 show(L);""; qring R = std(x2+yz); intvec v = 0,2,4; printlevel = 2; //shows what is going on ideal i = x,y,z; //computes Ext^i(r/(x,y,z),r/(x2+yz)), i=0,2,4 list L = Ext_R(v,i,1); //over the qring R=r/(x2+yz), std and kbase printlevel = p; } /////////////////////////////////////////////////////////////////////////////// proc Ext (intvec v, module M, module N, list #) USAGE: Ext(v,M,N[,any]); v=int/intvec, M,N=modules COMPUTE: A presentation of Ext^k(M',N'); for k=v[1],v[2],... where M'=coker(M) and N'=coker(N). Let 0<--M'<-- F0 <-M-- F1 <-- F2 <--... resp. 0<--N'<-- G0 <--N- G1 be a free resolution of M' resp. a presentations of N'. Consider 0 0 0 |^ |^ |^ --> Hom(Fk-1,N') -Ak-> Hom(Fk,N') -Ak+1-> Hom(Fk+1,N') |^ |^ |^ --> Hom(Fk-1,G0) -Ak-> Hom(Fk,G0) -Ak+1-> Hom(Fk+1,G0) |^ |^ |C |B Hom(Fk,G1) -----> Hom(Fk+1,G1) (Ak,Ak+1 induced by M and B,C induced by N). Let K=modulo(Ak+1,B), J=module(Ak)+module(C) and Ext=modulo(K,J), then we have exact sequences R^p --K-> Hom(Fk,G0) --Ak+1-> Hom(Fk+1,G0)/im(B) R^q -Ext-> R^p --K->Hom(Fk,G0)/im(Ak)+im(C) --Ak+1->Hom(Fk+1,G0)/im(B) Hence Ext presents Ext^k(M',N') RETURN: Ext, of type module, a presentation of Ext^k(M',N') if v is of type int, resp. a list of Ext^k (k=v[1],v[2],...) if v is of type intvec. In case of a third argument of any type return a list: [1] = module Ext/list of Ext^k [2] = SB of Ext/list of SB of Ext^k [3] = matrix/list of matrices, each representing a kbase of Ext^k (if finite dimensional) DISPLAY: printlevel >=0: degree of Ext^k for each k (default) printlevel >=1: Ak, Ak+1 and kbase of Ext^k in Hom(Fk,G0) (if finite dimensional) NOTE: In order to compute Ext^k(M,N) use the command Ext(k,syz(M),syz(N)); or: list P=mres(M,2); list Q=mres(N,2); Ext(k,P[2],Q[2]); EXAMPLE: example Ext; shows examples { //---------- initialisation --------------------------------------------------- int k,max,ii,l,row,col; module A,B,C,D,M1,M2,N1,ker,imag,extMN,extMN0; matrix kb; list L1,L2,L3,L,resM,K; ideal test1; intmat Be; int s = size(v); intvec v1 = sort(v)[1]; max = v1[s]; // the maximum integer occuring in intvec v int p = printlevel-voice+3; // p=printlevel+1 (default: p=1) //---------- test: coker(N)=basering, coker(N)=0 ? ---------------------------- if( max<0 ) { dbprint(p,"// Ext^i=0 for i<0!"); return([1]); } N1 = std(N); if( size(N1)==0 ) //coker(N)=basering, in this case proc Ext_R is faster { printlevel=printlevel+1; if( size(#)==0 ) { def E = Ext_R(v,M); printlevel=printlevel-1; return(E); } else { def E = Ext_R(v,M,#[1]); printlevel=printlevel-1; return(E); } } if( dim(N1)==-1 ) //coker(N)=0, all Ext-groups are 0 { dbprint(p-1,"2nd module presents 0, hence Ext^k=0, for all k"); for( ii=1; ii<=s; ii++ ) { k=v[ii]; extMN = gen(1); extMN0 = std(extMN); L1[ii] = extMN; L2[ii] = extMN0; L3[ii] = matrix(kbase(extMN0)); if( p>0 ) { "// degree of Ext^"+string(k)+":"; degree(extMN0);""; } } } else { if( size(N1) < size(N) ) { N=N1;} row = nrows(N); //---------- resolution of M ------------------------------------------------- resM = mres(M,max+1); for( ii=1; ii<=s; ii++ ) { k=v[ii]; if( k<0 ) // Ext^k is 0 for negative k { dbprint(p-1,"// Ext^k=0 for k<0!"); extMN = gen(1); extMN0 = std(extMN); L1[ii] = extMN; L2[ii] = extMN0; L3[ii] = matrix(kbase(extMN0)); if( p>0 ) { "// degree of Ext^"+string(k)+":"; degree(extMN0);""; } } else { M2 = resM[k+1]; if( k==0 ) { M1=0*gen(nrows(M2)); } else { M1 = resM[k]; } col = ncols(M1); D = kohom(N,col); //---------- computing homology ---------------------------------------------- imag = kontrahom(M1,row); A = kontrahom(M2,row); B = kohom(N,ncols(M2)); ker = modulo(A,B); imag = imag,D; extMN = modulo(ker,imag); dbprint(p-1,"// Computing Ext^"+string(k)+":", "// Let 0<--coker(M)<--F0<--F1<--F2<--... be a resolution of coker(M),", "// and 0<--coker(N)<--G0<--G1 a presentation of coker(N),", "// then Hom(F"+string(k)+",G0)-->Hom(F"+string(k+1)+",G0) is given by:",A, "// and Hom(F"+string(k-1)+",G0) + Hom(F"+string(k)+",G1)-->Hom(F"+string(k)+",G0) is given by:",imag,""); extMN0 = std(extMN); if( p>0 ) { "// degree of Ext^"+string(k)+":"; degree(extMN0);""; } //---------- more information ------------------------------------------------- if( size(#)>0 ) { if( vdim(extMN0) >= 0 ) { kb = kbase(extMN0); if ( size(ker)!=0) { kb = matrix(ker)*kb; } dbpri(p-1,"// columns of matrix are kbase of Ext^"+ string(k)+" in Hom(F"+string(k)+",G0)",kb,""); if( p>0 ) { for (l=1;l<=ncols(kb);l=l+1) { "// element",l,"of kbase of Ext^"+string(k)+" in Hom(F"+string(k)+",G0)"; "// as matrix: F"+string(k)+"-->G0"; print(matrix(ideal(kb[l]),row,col)); } ""; } L3[ii] = matrix(kb); } L2[ii] = extMN0; } L1[ii] = extMN; } } } if( size(#) ) { if( s>1 ) { L = L1,L2,L3; return(L); } else { L = extMN,extMN0,matrix(kb); return(L); } } else { if( s>1 ) { return(L1); } else { return(extMN); } } } example {"EXAMPLE:"; echo=2; int p = printlevel; printlevel = 1; ring r = 0,(x,y),dp; ideal i = x2-y3; ideal j = x2-y5; list E = Ext(0..2,i,j); // Ext^k(r/i,r/j) for k=0,1,2 over r qring R = std(i); ideal j = fetch(r,j); module M = [-x,y],[-y2,x]; printlevel = 2; module E1 = Ext(1,M,j); // Ext^1(R^2/M,R/j) over R=r/i list l = Ext(4,M,M,1); // Ext^4(R^2/M,R^2/M) over R=r/i printlevel = p; } //////////////////////////////////////////////////////////////////////////////// proc Hom (module M, module N, list #) USAGE: Hom(M,N,[any]); M,N=modules COMPUTE: A presentation of Hom(M',N'), M'=coker(M), N'=coker(N) as follows: Let ...-->F1 --M-> F0-->M'-->0 and ...-->G1 --N-> G0-->N'-->0 be presentations of M' and N'. Consider 0 0 |^ |^ 0 --> Hom(M',N') ----> Hom(F0,N') ----> Hom(F1,N') |^ |^ (A: induced by M) Hom(F0,G0) --A-> Hom(F1,G0) |^ |^ (B,C:induced by N) |C |B Hom(F0,G1) ----> Hom(F1,G1) Let D=modulo(A,B) and Hom=modulo(D,C), then we have exact sequences R^p --D-> Hom(F0,G0) --A-> Hom(F1,G0)/im(B) R^q -Hom-> R^p --D-> Hom(F0,G0)/im(C) --A-> Hom(F1,G0)/im(B). Hence Hom presents Hom(M',N') RETURN: Hom, of type module, presentation of Hom(M',N') or, in case of 3 arguments, a list: [1] = Hom [2] = SB of Hom [3] = kbase of coker(Hom) (if finite dimensional), represented by elements in Hom(F0,G0) via mapping D DISPLAY: printlevel >=0: degree of Hom (default) printlevel >=1: D and C and kbase of coker(Hom) in Hom(F0,G0) printlevel >=2: elements of kbase of coker(Hom) as matrix :F0-->G0 NOTE: DISPLAY is as described only for a direct call of 'Hom'. Calling 'Hom' from another proc has the same effect as decreasing printlevel by 1. EXAMPLE: example Hom; shows examples { //---------- initialisation --------------------------------------------------- int l,p; matrix kb; module A,B,C,D,homMN,homMN0; list L; //---------- computation of Hom ----------------------------------------------- B = kohom(N,ncols(M)); A = kontrahom(M,nrows(N)); C = kohom(N,nrows(M)); D = modulo(A,B); homMN = modulo(D,C); homMN0= std(homMN); p = printlevel-voice+3; // p=printlevel+1 (default: p=1) if( p>=0 ) { "// degree of Hom:"; degree(homMN0); ""; } dbprint(p-1,"// given ...--> F1 --M-> F0 -->M'--> 0 and ...--> G1 --N-> G0 -->N'--> 0,", "// show D=ker(Hom(F0,G0) --> Hom(F1,G0)/im(Hom(F1,G1) --> Hom(F1,G0)))",D, "// show C=im(Hom(F0,G1) --> Hom(F0,G0))",C,""); //---------- extra output if size(#)>0 ---------------------------------------- if( size(#)>0 ) { if( vdim(homMN0)>0 ) { kb = kbase(homMN0); kb = matrix(D)*kb; if( p>2 ) { for (l=1;l<=ncols(kb);l=l+1) { "// element",l,"of kbase of Hom in Hom(F0,G0) as matrix: F0-->G0:"; print(matrix(ideal(kb[l]),nrows(N),nrows(M))); } } else { dbprint(p-1,"// columns of matrix are kbase of Hom in Hom(F0,G0)",kb); } L=homMN,homMN0,kb; return(L); } L=homMN,homMN0; return(L); } return(homMN); } example {"EXAMPLE:"; echo = 2; int p = printlevel; printlevel= 1; //in 'example proc' printlevel has to be increased by 1 ring r = 0,(x,y),dp; ideal i = x2-y3,xy; qring q = std(i); ideal i = fetch(r,i); module M = [-x,y],[-y2,x],[x3]; module H = Hom(M,i); print(H); printlevel= 2; list L = Hom(M,i,1);""; ring s = 3,(x,y,z),(c,dp); ideal i = jacob(ideal(x2+y5+z4)); qring rq=std(i); matrix M[2][2]=xy,x3,5y,4z,x2; matrix N[3][2]=x2,x,y3,3xz,x2z,z; print(M); print(N); list l=Hom(M,N,1); printlevel = p; } //////////////////////////////////////////////////////////////////////////////// proc homology (matrix A,matrix B,module M,module N,list #) USAGE: homology(A,B,M,N); COMPUTE: Let M and N be submodules of R^m and R^n presenting M'=R^m/M, N'=R^n/N (R=basering) and let A,B matrices inducing maps R^k--A-->R^m--B-->R^n. Compute a presentation R^q --H-> R^m of the module ker(B)/im(A) := ker(M'/im(A) --B--> N'/im(BM)+im(BA)). If B induces a map M'--B-->N' (i.e BM=0) and if R^k--A-->M'--B-->N' is a complex (i.e. BA=0) then ker(B)/im(A) is the homology of this complex RETURN: module H, a presentation of ker(B)/im(A) NOTE: homology returns a free module of rank m if ker(B)=im(A) EXAMPLE: example homology; shows examples { module ker,ima; ker = modulo(B,N); ima = A,M; return(modulo(ker,ima)); } example {"EXAMPLE"; echo=2; ring r; ideal id=maxideal(4); qring qr=std(id); module N=maxideal(3)*freemodule(2); module M=maxideal(2)*freemodule(2); module B=[2x,0],[x,y],[z2,y]; module A=M; degree(std(homology(A,B,M,N)));""; ring s=0,x,ds; qring qs=std(x4); module A=[x];module B=A; module M=[x3];module N=M; homology(A,B,M,N); } ////////////////////////////////////////////////////////////////////////////// proc kernel (matrix A,module M,module N) USAGE: kernel(A,M,N); COMPUTE: Let M and N be submodules of R^m and R^n presenting M'=R^m/M, N'=R^n/N (R=basering) and let A:R^m-->R^n a matrix inducing a map A':M'-->N'. Compute a presentation K of ker(A') as in the commutative diagram: ker(A') ---> M' --A'--> N' |^ |^ |^ | | | R^r ---> R^m --A--> R^n |^ |^ |^ |K |M |N | | | R^s ---> R^p -----> R^q RETURN: module K, a presentation of ker(A') EXAMPLE: example kernel; shows examples { module M1 = modulo(A,N); return(modulo(M1,M)); } example {"EXAMPLE"; echo=2; ring r; module N=[2x,x],[0,y]; module M=maxideal(1)*freemodule(2); matrix A[2][2]=2x,0,x,y,z2,y; module K=kernel(A,M,N); degree(std(K)); print(K); } //////////////////////////////////////////////////////////////////////////////// proc kohom (matrix M, int j) USAGE: kohom(A,k); A=matrix, k=integer RETURN: matrix Hom(R^k,A) i.e. let A be a matrix defining a map: F1 --> F2 of free R-modules, the matrix of Hom(R^k,F1)-->Hom(R^k,F2) is computed EXAMPLE: example kohom; shows an example { if (j==1) { return(M);} if (j>1) { return(outer(M,diag(1,j))); } else { return(0);} } example {"EXAMPLE:"; echo=2; ring r; matrix n[2][3]=x,y,5,z,77,33; print(kohom(n,3)); } ///////////////////////////////////////////////////////////////////////////////// proc kontrahom (matrix M, int j) USAGE: kontrahom(A,k); A=matrix, k=integer RETURN: matrix Hom(A,R^k), i.e. let A be a matrix defining a map: F1 --> F2 of free R-modules, the matrix of Hom(F2,R^k)-->Hom(F1,R^k) is computed EXAMPLE: example kontrahom; shows an example { if (j==1) { return(transpose(M));} if (j>1) { return(transpose(outer(diag(1,j),M)));} else { return(0);} } example {"EXAMPLE:"; echo=2; ring r; matrix n[2][3]=x,y,5,z,77,33; print(kontrahom(n,3)); } ///////////////////////////////////////////////////////////////////////////////