LIB "tst.lib"; tst_init(); LIB "multigrading.lib"; ring R = 0, (x, y, z), dp; // Weights of variables intmat M[3][3] = 1, 0, 0, 0, 1, 0, 0, 0, 1; // Torsion: intmat L[3][2] = 1, 1, 1, 3, 1, 5; // attaches M & L to R (==basering): setBaseMultigrading(M, L); // Grading: Z^3/L // Torsion is accessible via "getLattice()": getLattice() == L; // its hermite NF: print(getLattice("hermite")); kill L, M; // ----------- isomorphic multigrading -------- // // Weights of variables intmat M[2][3] = 1, -2, 1, 1, 1, 0; // Torsion: intmat L[2][1] = 0, 2; // attaches M & L to R (==basering): setBaseMultigrading(M, L); // Grading: Z + (Z/2Z) // Torsion is accessible via "getLattice()": getLattice() == L; // its hermite NF: print(getLattice("hermite")); kill L, M; // ----------- extreme case ------------ // // Weights of variables intmat M[1][3] = 1, -1, 10; // Torsion: intmat L[1][1] = 0; // attaches M & L to R (==basering): setBaseMultigrading(M); // Grading: Z^3 // Torsion is accessible via "getLattice()": getLattice() == L; // its hermite NF: print(getLattice("hermite")); tst_status(1);$