////////////////////////////////////////////////////////////////////////////// version="$Id$"; category="Noncommutative"; info=" LIBRARY: ratgb.lib Groebner bases in Ore localizations of noncommutative G-algebras AUTHOR: Viktor Levandovskyy, levandov@risc.uni-linz.ac.at THEORY: Let A be an operator algebra with R = K[x1,.,xN] as subring. The operators are usually denoted by {d1,..,dM}. @* Assume, that A is a G-algebra, then the set S=R-{0} is multiplicatively closed Ore set in A. @* That is, for any s in S and a in A, there exist t in S and b in A, such that sa=bt. @* In other words, one can transform any left fraction into the right fraction. The algebra A_S is called an Ore localization of A with respect to S. This library provides Groebner basis procedure for A_S, performing polynomial (that is fraction-free) computations only. PROCEDURES: ratstd(ideal I, int n); compute Groebner basis and dimensions in Ore localization of the basering w.r.t. first n variables SUPPORT: SpezialForschungsBereich F1301 of the Austrian FWF and @* Transnational Access Program of RISC Linz, Austria " LIB "poly.lib"; LIB "dmodapp.lib"; // for Appel1, Appel2, Appel4 //static proc rm_content_id(def J) "USAGE: rm_content_id(I); I an ideal/module RETURN: the same type as input PURPOSE: remove the content of every generator of I EXAMPLE: example rm_content_id; shows examples " { def I = J; int i; int s = ncols(I); for (i=1; i<=s; i++) { if (I[i]!=0) { I[i] = I[i]/content(I[i]); } } return(I); } example { "EXAMPLE:"; echo = 2; ring r = (0,k,n),(K,N),dp; ideal I = n*((k+1)*K - (n-k)), k*((n-k+1)*N - (n+1)); I; rm_content_id(I); module M = I[1]*gen(1), I[2]*gen(2); print(rm_content_id(M)); } proc ratstd(def I, int is, list #) "USAGE: ratstd(I, n [,eng]); I an ideal/module, n an integer, eng an optional integer RETURN: ring PURPOSE: compute the Groebner basis of I in the Ore localization of the basering with respect to the subalgebra, generated by first n variables ASSUME: the variables are organized in two blocks and @* the first block of length n contains the elements @* with respect to which one localizes, @* the basering is equipped with the elimination block ordering @* for the variables in the second block NOTE: the output ring C is commutative. The ideal rGBid in C represents the rational form of the output ideal pGBid in the basering. @* During the computation, the D-dimension of I and the corresponding dimension as K(x)-vector space of I are computed and printed out. @* Setting optional integer eng to 1, slimgb is taken as Groebner engine DISPLAY: In order to see the steps of the computation, set printlevel to >=2 EXAMPLE: example ratstd; shows examples " { int ppl = printlevel-voice+1; int eng = 0; // optional arguments if (size(#)>0) { if (typeof(#[1]) == "int") { eng = int(#[1]); } } dbprint(ppl,"engine chosen to be"); dbprint(ppl,eng); // 0. do the subst's /reformulations // for the time being, ASSUME // the ord. is an elim. ord. for D // and the block of X's is on the left // its length is 'is' int i,j,k; dbprint(ppl,"// -1- creating K(x)[D]"); // 1. create K(x)[D], commutative def save = basering; list L = ringlist(save); list RL, tmp1,tmp2,tmp3,tmp4; intvec iv; // copy: field, enlarge it with Xs if ( size(L[1]) == 0) { // i.e. the field with char only tmp2[1] = L[1]; // tmp1 = L[2]; j = size(L[2]); iv = 1; for (i=1; i<=is; i++) { tmp1[i] = L[2][i]; iv = iv,1; } iv = iv[1..size(iv)-1]; //extra 1 tmp2[2] = tmp1; tmp3[1] = "lp"; tmp3[2] = iv; // tmp2[3] = 0; tmp4[1] = tmp3; tmp2[3] = tmp4; //[1] = "lp"; // tmp2[3][2] = iv; tmp2[4] = ideal(0); RL[1] = tmp2; } if ( size(L[1]) >0 ) { // TODO!!!!! tmp2[1] = L[1][1]; //char K // there are parameters // add to them X's, IGNORE alg.extension // the ordering on pars tmp1 = L[1][2]; // param names j = size(tmp1); iv = L[1][3][1][2]; for (i=1; i<=is; i++) { tmp1[j+i] = L[2][i]; iv = iv,1; } tmp2[2] = tmp1; tmp2[3] = L[1][3]; tmp2[3][1][2] = iv; tmp2[4] = ideal(0); RL[1] = tmp2; } // vars: leave only D's kill tmp1; list tmp1; // tmp1 = L[2]; for (i=is+1; i<= size(L[2]); i++) { tmp1[i-is] = L[2][i]; } RL[2] = tmp1; // old: assume the ordering is the block with (a(0:is),ORD) // old :set up ORD as the ordering // L; "RL:"; RL; if (size(L[3]) != 3) { //"note: strange ordering"; // NEW assume: ordering is the antiblock with (a(0:is),a(*1),a(*), ORD) // get the a() parts after is => they should form a complete D-ordering list L3 = L[3]; list NL3; kill tmp3; list tmp3; int @sl = size(L3); int w=1; int z; intvec va,vb; while(L3[w][1] == "a") { va = L3[w][2]; for(z=1;z<=nvars(save)-is;z++) { vb[z] = va[is+z]; } tmp3[1] = "a"; tmp3[2] = vb; NL3[w] = tmp3; tmp3=0; w++; } // check for completeness: must be >= nvars(save)-is rows if (w < nvars(save)-is) { "note: ordering is incomplete on D. Adding lower Dp block"; // adding: positive things like Dp tmp3[1]= "Dp"; for (z=1; z<=nvars(save)-is; z++) { va[is+z] = 1; } tmp3[2] = va; NL3[w] = tmp3; tmp3 = 0; w++; } NL3[w] = L3[@sl]; // module ord? RL[3] = NL3; } else { kill tmp2; list tmp2; tmp2[1] = L[3][2]; tmp2[2] = L[3][3]; RL[3] = tmp2; } // factor ideal is ignored RL[4] = ideal(0); // "ringlist:"; RL; def @RAT = ring(RL); dbprint(ppl,"// -2- preprocessing with content"); // 2. preprocess input with rm_content_id setring @RAT; dbprint(ppl-1, @RAT); // ideal CI = imap(save,I); def CI = imap(save,I); CI = rm_content_id(CI); dbprint(ppl-1, CI); dbprint(ppl,"// -3- running groebner"); // 3. compute G = GB(I) w.r.t. the elim. ord. for D setring save; // ideal CI = imap(@RAT,CI); def CI = imap(@RAT,CI); option(redSB); option(redTail); if (eng) { def G = slimgb(CI); } else { def G = groebner(CI); } // ideal G = groebner(CI); // although slimgb looks better // def G = slimgb(CI); G = simplify(G,2); // to be sure there are no 0's dbprint(ppl-1, G); dbprint(ppl,"// -4- postprocessing with content"); // 4. postprocess the output with 1) rm_content_id, 2) lm-minimization; setring @RAT; // ideal CG = imap(save,G); def CG = imap(save,G); CG = rm_content_id(CG); CG = simplify(CG,2); dbprint(ppl-1, CG); // warning: a bugfarm! in this ring, the ordering might change!!! (see appelF4) // so, simplify(32) should take place in the orig. ring! and NOT here // CG = simplify(CG,2+32); // 4b. create L(G) with X's as coeffs (for minimization) setring save; G = imap(@RAT,CG); int sG = ncols(G); // ideal LG; def LG = G; for (i=1; i<= sG; i++) { LG[i] = lead(G[i]); } // compute the D-dimension of the ideal in the ring @RAT setring @RAT; // ideal LG = imap(save,LG); def LG = imap(save,LG); // ideal LGG = groebner(LG); // cosmetics def LGG = groebner(LG); // cosmetics int d = dim(LGG); int Ddim = d; printf("the D-dimension is %s",d); if (d==0) { d = vdim(LGG); int Dvdim = d; printf("the K-dimension is %s",d); } // ideal SLG = simplify(LG,8+32); //contains zeros def SLG = simplify(LG,8+32); //contains zeros setring save; // ideal SLG = imap(@RAT,SLG); def SLG = imap(@RAT,SLG); // simplify(LG,8+32); //contains zeros intvec islg; if (SLG[1] == 0) { islg = 0; } else { islg = 1; } for (i=2; i<= ncols(SLG); i++) { if (SLG[i] == 0) { islg = islg, 0; } else { islg = islg, 1; } } for (i=1; i<= ncols(LG); i++) { if (islg[i] == 0) { G[i] = 0; } } G = simplify(G,2); // ready! // G = imap(@RAT,CG); // return the result // ideal pGBid = G; def pGBid = G; export pGBid; // export Ddim; // export Dvdim; setring @RAT; // ideal rGBid = imap(save,G); def rGBid = imap(save,G); // CG; export rGBid; setring save; return(@RAT); // kill @RAT; // return(G); } example { "EXAMPLE:"; echo = 2; ring r = 0,(k,n,K,N),(a(0,0,1,1),a(0,0,1,0),dp); // note, that the ordering must be an antiblock ordering matrix D[4][4]; D[1,3] = K; D[2,4] = N; def S = nc_algebra(1,D); setring S; // S is the 2nd shift algebra ideal I = (k+1)*K - (n-k), (n-k+1)*N - (n+1); int is = 2; // hence 1..2 variables will be treated as invertible def A = ratstd(I,is); pGBid; // polynomial form setring A; rGBid; // rational form } /* proc exParamAppelF4() { // Appel F4 LIB "ratgb.lib"; ring r = (0,a,b,c,d),(x,y,Dx,Dy),(a(0,0,1,1),a(0,0,1,0),dp); matrix @D[4][4]; @D[1,3]=1; @D[2,4]=1; def S=nc_algebra(1,@D); setring S; ideal I = x*Dx*(x*Dx+c-1) - x*(x*Dx+y*Dy+a)*(x*Dx+y*Dy+b), y*Dy*(y*Dy+d-1) - y*(x*Dx+y*Dy+a)*(x*Dx+y*Dy+b); def A = ratstd(I,2); pGBid; // polynomial form setring A; rGBid; // rational form // hence, the K(x,y) basis is {1,Dx,Dy,Dy^2} } // more examples: // F1 is hard appel F1 { LIB "dmodapp.lib"; LIB "ratgb.lib"; def A = appelF1(); setring A; IAppel1; def F1 = ratstd(IAppel1,2); lead(pGBid); setring F1; rGBid; } // F2 is much easier appel F2 { LIB "dmodapp.lib"; LIB "ratgb.lib"; def A = appelF2(); setring A; IAppel2; def F1 = ratstd(IAppel2,2); lead(pGBid); setring F1; rGBid; } // F4 is feasible appel F4 { LIB "dmodapp.lib"; LIB "ratgb.lib"; def A = appelF4(); setring A; IAppel4; def F1 = ratstd(IAppel4,2); lead(pGBid); setring F1; rGBid; } */