////////////////////////////////////////////////////////////////////////////// version="version primdecint.lib 4.0.0.0 Jun_2013 "; // $Id$ category = "Commutative Algebra"; info=" LIBRARY: primdecint.lib primary decomposition of an ideal in the polynomial ring over the integers AUTHORS: G. Pfister pfister@mathematik.uni-kl.de @* A. Sadiq afshanatiq@gmail.com @* S. Steidel steidel@mathematik.uni-kl.de OVERVIEW: A library for computing the primary decomposition of an ideal in the polynomial ring over the integers, Z[x_1,...,x_n]. The first procedure 'primdecZ' can be used in parallel. PROCEDURES: primdecZ(I); compute the primary decomposition of ideal I primdecZM(I); compute the primary decomposition of module I minAssZ(I); compute the minimal associated primes of I radicalZ(I); compute the radical of I heightZ(I); compute the height of I equidimZ(I); compute the equidimensional part of I intersectZ(I,J) compute the intersection of I and J "; LIB "primdec.lib"; //////////////////////////////////////////////////////////////////////////////// proc primdecZ(ideal I, list #) "USAGE: primdecZ(I[, n]); I ideal, n integer (number of processors) NOTE: If size(#) > 0, then #[1] is the number of available processors for the computation. RETURN: a list pr of primary ideals and their associated primes: @format pr[i][1] the i-th primary component, pr[i][2] the i-th prime component. @end format EXAMPLE: example primdecZ; shows an example " { if(size(I)==0){return(list(ideal(0),ideal(0)));} //-------------------- Initialize optional parameters ------------------------ if(size(#) > 0) { if(size(#) == 1) { int n = #[1]; ideal TES = 1; } if(size(#) == 2) { int n = #[1]; ideal TES = #[2]; } } else { int n = 1; ideal TES = 1; } if(deg(I[1]) == 0) { ideal J = I; } else { ideal J = stdZ(I); } ideal K,N; def R=basering; number s; list rl=ringlist(R); int i,j,p,m,ex,nu,k_link; list P,B,IS; ideal Q,JJ; ideal TQ=1; if(deg(J[1])==0) { //=== I intersected with Z is not zero list rp=rl; rp[1]=0; //=== q is generator of I intersect Z number q=leadcoef(J[1]); def Rhelp=ring(rp); setring Rhelp; number q=imap(R,q); //=== computes the primes occuring in a generator of I intersect Z list L = primefactors(q); list A; ideal J = imap(R,J); for(j=1;j<=size(L[2]);j++) { if(L[2][j] > 1){ ex = 1; break; } } if(printlevel >= 10) { "n = "+string(n); "size(L[2]) = "+string(size(L[2])); } int RT = rtimer; if((n > 1) && (n < size(L[2]))) { //----- Create n1 links l(1),...,l(n1), open all of them and compute --------- //----- standard basis for the primes L[1][2],...,L[1][n + 1]. --------- for(i = 1; i <= n; i++) { p=int(L[1][i + 1]); nu=int(L[2][i + 1]); //link l(i) = "MPtcp:fork"; link l(i) = "ssi:fork"; open(l(i)); write(l(i), quote(modp(eval(J), eval(p), eval(nu)))); } p = int(L[1][1]); nu = int(L[2][1]); int t = timer; A[size(A)+1] = modp(J, p, nu); t = timer - t; if(t > 60) { t = 60; } int i_sleep = system("sh", "sleep "+string(t)); j = n + 2; while(j <= size(L[2]) + 1) { for(i = 1; i <= n; i++) { //=== ask if link l(i) is ready otherwise sleep for t seconds if(status(l(i), "read", "ready")) { //=== read the result from l(i) A[size(A)+1] = read(l(i)); if(j <= size(L[2])) { p=int(L[1][j]); nu=int(L[2][j]); write(l(i), quote(modp(eval(J), eval(p), eval(nu)))); j++; } else { k_link++; close(l(i)); } } } //=== k_link describes the number of closed links if(k_link == n) { j++; } i_sleep = system("sh", "sleep "+string(t)); } } else { for(j=1;j<=size(L[2]);j++) { A[size(A)+1] = modp(J, L[1][j], L[2][j]); } } setring R; list A = imap(Rhelp,A); if(printlevel >= 10) { "A is computed in "+string(rtimer - RT)+" seconds."; } for(i=1;i<=size(A);i++) { //=== computes for all p in L the minimal associated primes of //=== IZ/p[variables] p = int(A[i][2]); if(printlevel >= 10) { "p = "+string(p); RT = rtimer; } nu = int(A[i][3]); //=== maximal power of p dividing q, generator of I intersect Z s = p^nu; rp[1] = p; def S = ring(rp); setring S; ideal J = imap(R,J); setring R; if(nu>1) { //=== p is of multiplicity > 1 in q B = A[i][1]; for(j=1;j<=size(B);j++) { //=== the minimal associated primes of I K=B[j],p; K=stdZ(K); B[j]=K; } for(j=1;j<=size(B);j++) { K=B[j]; //=== compute maximal independent set for KZ/p[variables] setring S; J=imap(R,K); J=simplify(J,2); attrib(J,"isSB",1); IS=Primdec::maxIndependSet(J); setring R; //=== computing the pseudo primary and extract it N=J,s; N=stdZ(N); Q=extractZ(N,j,IS,B); //=== test for useless primaries if(size(reduce(TES,Q))>0) { TQ=intersectZ(TQ,Q); //TQ=intersect(TQ,Q); P[size(P)+1]=list(Q,K); } } } else { //=== p is of multiplicity 1 in q we can compute the //=== primary decomposition directly B = A[i][1]; for(j=1;j<=size(B);j++) { K=B[j][2],p; K=stdZ(K); Q=B[j][1],p; Q=stdZ(Q); if(size(reduce(TES,Q))>0) { //TQ=intersectZ(TQ,Q); P[size(P)+1]=list(Q,K); } } if(ex) { JJ=imap(S,J); JJ=JJ,p; JJ=stdZ(JJ); TQ=intersectZ(TQ,JJ); //TQ=intersect(TQ,JJ); } } kill S; if(printlevel >= 10) { string(p)+" done in "+string(rtimer - RT)+" seconds."; } } setring R; if(!ex){return(P);} J=stdZ(J); TQ=intersectZ(TQ,TES); //TQ=intersect(TQ,TES); if(size(reduce(TQ,J))!=0) { //=== taking care about embedded components K=stdZ(quotientZ(J,TQ)); ideal W=K; m++; while(size(reduce(intersectZ(W,TQ),J))!=0) //while(size(reduce(intersect(W,TQ),J))!=0) { //W=stdZ(addIdealZ(I,K^m)); W=stdZ(addIdealZ(I,specialPowerZ(K,m))); m++; } list E=primdecZ(W,n,TQ); for(i=1;i<=size(E);i++) { P[size(P)+1]=E[i]; } } return(P); } //==== the ideal intersected with Z is zero rl[1]=0; def Rhelp=ring(rl); setring Rhelp; ideal J=imap(R,J); J=std(J); //=== the primary decomposition over Q which gives the primary //=== decomposition of I:h for a suitable integer h list pr=primdecGTZ(J); for(i=1;i<=size(pr);i++) { pr[i]=list(std(pr[i][1]),std(pr[i][2])); } setring R; list pr=imap(Rhelp,pr); //=== intersection with Z[variables] for(i=1;i<=size(pr);i++) { pr[i]=list(coefZ(pr[i][1])[1],coefZ(pr[i][2])[1]); } //=== find h in Z such that I is the intersection of I:h and //=== and I:h = IQ[variables] intersected with Z[varables] list H =coefZ(J); ideal Y=H[1]; int h=H[2]; J=J,h; //=== call primary decomposition over Z for list M; if(h!=1) { M=primdecZ(J,n,Y); j=0; //=== remove useless primary ideals while(j1) { //=== p is of multiplicity >1 in q list A=minAssGTZ(J); j=0; while(j 1) resp. the primary //=== decomposition (else) of J in Z/p and maps the result back to the basering def R = basering; list rp = ringlist(R); rp[1] = p; def Rp = ring(rp); setring Rp; ideal J = imap(R,J); if(nu > 1) { //=== p is of multiplicity > 1 in q list A = minAssGTZ(J); setring R; list A = imap(Rp,A); return(list(A,p,nu)); } else { list A = primdecGTZ(J); setring R; list A = imap(Rp,A); return(list(A,p,nu)); } } //////////////////////////////////////////////////////////////////////////////// static proc coefPrimeZ(ideal I) { //=== computes the primes occuring in the product of the leading coefficients //=== of I number h=1; int i; for(i=1;i<=size(I);i++) { h=h*leadcoef(I[i]); // besser machen (gleich zerlegen, // nicht ausmultiplizieren) } def R=basering; ring Rhelp=0,x,dp; number h=imap(R,h); //list L=PollardRho(h,5000,1); list L=primefactors(h)[1]; for(i=1;i<=size(L);i++){L[i]=int(L[i]);} setring R; return(L); } //////////////////////////////////////////////////////////////////////////////// static proc coefZ(ideal I) { //=== assume IQ[variables]=, Groebner basis, g_i in Z[variables] //=== computes an integer h such that //=== Z[variables]:h^infinity = IQ[variables] intersected //=== with Z[variables] //=== returns a list with IQ[variables] intersected with Z[variables] and h int h=1; int i,e; ideal K=1; attrib(I,"isSB",1); list L=coefPrimeZ(I); if(size(L)==0){return(list(I,1));} int d=1; while(d!=0) { i++; K=quotientOneZ(I,L[i]); if(size(reduce(K,I))!=0) { h=h*L[i]; I=stdZ(K); e=1; } if(i==size(L)) { i=0; if(e) { e=0; } else { d=0; } } } if(h<0){h=-h;} return(list(K,h)); } //////////////////////////////////////////////////////////////////////////////// static proc specialPowerZ(ideal I, int m) { //=== computes the ideal generated by the m-th power of the generators of I int i; for(i=1;i<=size(I);i++) { I[i]=I[i]^m; } return(I); } //////////////////////////////////////////////////////////////////////////////// static proc separatorsZ(int j, list B) { //=== computes s such that s is not in B[j] but s is in B[i] for all i!=j int i,k; poly s=1; for(i=1;i<=size(B);i++) { if(i!=j) { for(k=1;k<=size(B[i]);k++) { if(reduce(B[i][k],B[j])!=0) { s=s*B[i][k]; break; } } } } return(s); } ////////////////////////////////////////////////////////////////////////////// static proc extractZ(ideal J, int j, list L, list B) { //=== P is an associated prime of J, the corresponding primary ideal is //=== computed, //=== L is a list of maximal independent sets for P in Z/p[variables] def R=basering; ideal P=B[j]; //=== first compute a pseudo primary ideal I, radical of I is P //=== method of Eisenbud //ideal I=addIdealZ(J,specialPowerZ(P,20)); //=== method of Shimoyama-Yokoyama poly s=separatorsZ(j,B); ideal I=satZ(J,s); //=== size(L)=0 means P is maximal ideal and I is primary if(size(L)>0) { if(L[1][3]!=0) { //=== if u in x is an independent set of L then we compute a Groebner //=== Basis in Z[u][x-u] execute("ring S=integer,("+L[1][1]+"),lp;"); ideal I=imap(R,I); I=stdZ(I); list rl=ringlist(S); rl[1]=0; def Shelp =ring(rl); setring Shelp; ideal I=imap(S,I); I[1]=0; I=simplify(I,2); if(L[1][3]==nvars(basering)) { list C; int i; for(i=1;i<=size(I);i++) { C[i]=I[i]; } } else { //=== this is our way to obtain the coefficients in Z[u] of the //=== leading terms of the Groebner basis above string quotring=Primdec::prepareQuotientring(nvars(basering)-L[1][3]); execute(quotring); ideal I=imap(Shelp,I); list C; int i; for(i=1;i<=size(I);i++) { C[i]=leadcoef(I[i]); } setring Shelp; list C=imap(quring,C); } setring R; list C=imap(Shelp,C); } else { I=stdZ(I); list C; int i; for(i=1;i<=size(I);i++) { C[i]=I[i]; } list rl=ringlist(R); rl[1]=0; def Shelp =ring(rl); } poly h=1; for(i=1;i<=size(C);i++) { if(deg(C[i])>0){h=h*C[i];} // das muss noch besser gemacht werden, // nicht ausmultiplizieren! } setring Shelp; poly h=imap(R,h); ideal fac=factorize(h,1); setring R; ideal fac=imap(Shelp,fac); for(i=1;i<=size(fac);i++) { I=satZ(I,fac[i]); } } I=stdZ(I); return(I); } //////////////////////////////////////////////////////////////////////////////// static proc normalizeZ(ideal I) { //=== if I[1]=q in Z, it replaces all other coeffs of polys in I by there value //=== mod q, std should do this automatically and then this procedure should be //=== removed if(deg(I[1])>0){return(I);} int i,j; number n; poly p; for(i=2;i<=size(I);i++) { j=1; while(j<=size(I[i])) { n=leadcoef(I[i][j]) mod leadcoef(I[1]); p=n*leadmonom(I[i][j]); I[i]=I[i]-I[i][j]+p; if(p!=0){j++;} } } return(I); } //////////////////////////////////////////////////////////////////////////////// static proc satZ(ideal I,poly h) { //=== saturates I by h ideal J=quotientOneZ(I,h); while(size(reduce(J,stdZ(I)))!=0) { I=J; J=quotientOneZ(I,h); J=normalizeZ(J); } return(J); } //////////////////////////////////////////////////////////////////////////////// static proc quotientOneZ(ideal I, poly f) { //=== this is needed because quotient(I,f) does not work properly, should be //=== replaced by quotient later def R=basering; int i; ideal K=intersectZ(I,ideal(f)); //ideal K=intersect(I,ideal(f)); //=== K[i]/f; does not work in rings with integer! This should be replaced //=== later execute("ring Rhelp=0,("+varstr(R)+"),dp;"); ideal K=imap(R,K); poly f=imap(R,f); for(i=1;i<=size(K);i++) { K[i]=K[i]/f; } setring R; K=imap(Rhelp,K); return(K); } //////////////////////////////////////////////////////////////////////////////// static proc quotientZ(ideal I, ideal J) { //=== this is needed because quotient(I,J) does not work properly, should be //=== replaced by quotient later int i; ideal K=quotientOneZ(I,J[1]); for(i=2;i<=size(J);i++) { K=intersectZ(K,quotientOneZ(I,J[i])); //K=intersect(K,quotientOneZ(I,J[i])); } return(K); } //////////////////////////////////////////////////////////////////////////////// static proc reduceZ(poly f, ideal I) { //=== this is needed because reduce(f,I) does not work properly, should be //=== replaced by reduce later if(f==0){return(f);} def R=basering; execute("ring Rhelp=0,("+varstr(R)+"),dp;"); ideal I=imap(R,I); poly f=imap(R,f); int i,j; poly m; number n; while(!i) { i=1; j=0; while(j0) { if(L[1][3]!=0) { //=== if u in x is an independent set of L then we compute a Groebner //=== Basis in Z[u][x-u] execute("ring S=integer,("+L[1][1]+"),lp;"); module I=imap(R,I); I=std(I); list rl=ringlist(S); rl[1]=0; def Shelp =ring(rl); setring Shelp; module I=imap(S,I); //=== this is our way to obtain the coefficients in Z[u] of the //=== leading terms of the Groebner basis above string quotring=Primdec::prepareQuotientring(nvars(basering)-L[1][3]); execute(quotring); module I=imap(Shelp,I); list C; int i; for(i=1;i<=size(I);i++) { C[i]=leadcoef(I[i]); } setring Shelp; list C=imap(quring,C); setring R; list C=imap(Shelp,C); } else { // this is the case that P=

, p prime I=std(I); ideal IC=simplify(flatten(lead(I)),2); list C; int i; for(i=1;i<=size(IC);i++) { C[i]=I[i]; } list rl=ringlist(R); rl[1]=0; def Shelp =ring(rl); } for(i=1;i<=size(C);i++) { if(deg(C[i])>0){h=h*C[i];} // das muss noch besser gemacht werden, // nicht ausmultiplizieren! } setring Shelp; poly h=imap(R,h); ideal fac=factorize(h,1); setring R; list II; h=1; ideal fac=imap(Shelp,fac); for(i=1;i<=size(fac);i++) { II=sat(I,fac[i]); I=II[1]; h=h*fac[i]^II[2]; } } I=std(I); return(list(I,h)); } proc primdecZM(module N) "USAGE: primdecZM(N); N module RETURN: a list pr of primary modules and their associated primes: @format pr[i][1] the i-th primary component, pr[i][2] the i-th prime component. @end format EXAMPLE: example primdecZM; shows an example " { list P,K,S; int i,j; list L=pseudo_primdecZM(N); list M,O; for(i=1;i<=size(L);i++) { if(size(L[i][2])!=0) { M=prepare_extractZM(L[i]); O=extractZM(L[i],M); P[size(P)+1]=list(O[1],L[i][2]); K[size(K)+1]=L[i][1]+O[2]*freemodule(nrows(L[i][1])); } else { P[size(P)+1]=L[i]; } } for(j=1;j<=size(K);j++) { S=primdecZM(K[j]); for(i=1;i<=size(S);i++) { P[size(P)+1]=S[i]; } } return(P); } example { "EXAMPLE:"; echo = 2; ring R=integer,(x,y),(c,lp); module N=[0,0,xy2-x2-xy],[0,y,x],[0,x,2xy-x],[x,0,-xy],[0,0,18x]; primdecZM(N); } //////////////////////////////////////////////////////////////////////////////// /* Examples: //=== IQ[a,b,c,d,e,f,g] intersect Z[a,b,c,d,e,f,g] = I (takes some time) ring R1=integer,(a,b,c,d,e,f,g),dp; ideal I=a2+2de+2cf+2bg+a, 2ab+e2+2df+2cg+b, b2+2ac+2ef+2dg+c, 2bc+2ad+f2+2eg+d, c2+2bd+2ae+2fg+e, 2cd+2be+2af+g2+f, d2+2ce+2bf+2ag+g; ring R2=integer,(a,b,c,d,e,f,g),dp; ideal I=181*32003, a2+2de+2cf+2bg+a, 2ab+e2+2df+2cg+b, b2+2ac+2ef+2dg+c, 2bc+2ad+f2+2eg+d, c2+2bd+2ae+2fg+e, 2cd+2be+2af+g2+f, d2+2ce+2bf+2ag+g; ring R3=integer,(w,z,y,x),dp; ideal I=xzw+(-y^2+y)*z^2, (-x^2+x)*w^2+yzw, ((y^4-2*y^3+y^2)*x-y^4+y^3)*z^3, y2z2w+(-y*4+2*y^3-y^2)*z3; ring R4=integer,(w,z,y,x),dp; ideal I=-2*yxzw+(-yx-y^2+y)*z^2, xw^2-yz^2, (yx^2-(2*y^2+2*y)*x+y^3-2*y^2+y)*z^3, (-2*y^2+2*y)*z^2*w+(yx-3*y^2-y)*z^3; ring R5=integer,(x,y,z),dp; ideal I=x2-y2-z2, xy-z2, y3+xz2-yz2+2z3+xy-z2, -y2z2+2z4+x2-y2+z2, y3z9+3y2z10+3yz11+z12-y2z2+2z4; ring R6=integer,(h, l, s, x, y, z),dp; //takes some time ideal I=hl-l2-4ls+hy, h2s-6ls3+h2z, xh2-l2s-h3; ring R7=integer,(x,y,z),dp; ideal I=x2-y2-(z+2)^2, xy-(z+2)^2, y3+x*(z+2)^2-y*(z+2)^2+2*(z+2)^3+xy-(z+2)^2, -y^2*(z+2)^2+2*(z+2)^4+x2-y2+(z+2)^2, y3z9+3y2z10+3yz11+z12-y2z2+2z4; ring R8=integer,(x,y,z),dp; ideal I=x2-y2-(z+2)^2, xy-(z+2)^2, y3+x*(z+2)^2-y*(z+2)^2+2*(z+2)^3+xy-(z+2)^2, -y^2*(z+2)^2+2*(z+2)^4+x2-y2+(z+2)^2, y3z9+3y2z10+3yz11+z12-y2z2+2z4; ring R9=integer,(w,z,y,x),dp; ideal I=630, ((y^2-y)*x-y^3+y^2)*z^2, (x-y)*zw, (x-y^2)*zw+(-y^2+y)*z^2, (-x^2+x)*w^2+(-yx+y)*zw; ring R10=integer,(w,z,y,x),dp; ideal I=1260, -yxzw+(-y^2+y)*z^2, (-x^2+x)*w^2-yxzw, ((-y^2+y)*x-y^3+2*y^2-y)*z^3, (y^2-y)*z^2*w+(-y^2+y)*z^2*w+(-y^2+y)*z^3; ring R11=integer,(w,z,y,x),dp; ideal I=(4*y^2*x^2+(4*y^3+4*y^2-y)*x-y^2-y)*z^2, (x+y+1)*zw+(-4*y^2*x-4*y^3-4*y^2)*z^2, (-x-2*y^2 - 2*y - 1)*zw + (8*y^3*x + 8*y^4 + 8*y^3 + 2*y^2+y)*z^2, ((y^3 + y^2)*x - y^2 - y)*z^2, (y +1)*zw + (-y^3 -y^2)*z^2, (x + 1)*zw +(- y^2 -y)*z^2, (x^2 +x)*w^2 + (-yx - y)*zw; ring R12=integer,(w,z,y,x),dp; ideal I=72, ((y^3 + y^2)*x - y^2 - y)*z^2, (y + 1)*zw + (-y^3 -y^2)*z^2, (x + 1)*zw + (-y^2 -y)*z^2, (x^2 + x)*w^2 + (-yx - y)*zw; ring R13=integer,(w,z,y,x),dp; ideal I=(((12*y+8)*x^2 +(2*y+2)*x)*zw +((-15*y^2 -4*y)*x-4*y^2 -y)*z^2, -x*w^2 +((-12*y -8)*x+2*y)*zw +(15*y^2+4*y)*z^2, (81*y^4*x^2 +(-54*y^3 -12*y^2)*x-12*y^3 -3*y^2)*z^3, (-24*yx+6*y^2-6*y)*z^2*w + (-81*y^4*x + 81*y^3 + 24*y^2)*z^3, (48*x^2 + (-30*y + 12)*x - 6*y)*z^2*w + ((81*y^3 -54*y^2 -24*y)*x -21*y^2 -6*y)*z^3, (-96*yx-18*y^3 +18*y^2-24*y)*z^2*w +(243*y^5*x-243*y^4 +72*y^3 +48*y^2)*z^3, 6*y*z^2*w^2 +((576*y+384)*x^2 + (-81*y^3 -306*y^2 -168*y+96)*x+81*y^2 -18*y)*z^3*w +((-720*y^2 - 192*y)*x + 450*y^3 - 60*y^2 - 48*y)*z^4); ring R14=integer,(x(1),x(2),x(3),x(4)),dp; ideal I=181*49^2, x(4)^4, x(1)*x(4)^3, x(1)*x(2)*x(4)^2, x(2)^2*x(4)^2, x(2)^2*x(3)*x(4), x(1)*x(2)*x(3)*x(4), x(1)*x(3)^2*x(4), x(3)^3*x(4); ring R15=integer,(x,y,z),dp; ideal I=32003*181*64, ((z^2-z)*y^2 + (z^2 -z)*y)*x; (z*y^3 + z*y^2)*x, (y^4 - y^2)*x, (z^2 - z)*y*x^2, (y^3 - y^2)*x^2, (z^3 - z^2)*x^4 + (2*z^3 -2*z^2)*x^3 + (z^3 -z^2)*x^2, z*y^2*x^2, z*y*x^4 +z*y*x^3, 2*y^2*x^4 +6*y^2*x^3 +6*y^2*x^2 + (y^3 +y^2)*x, z*x^5 + (z^2 +z)*x^4 + (2*z^2 -z)*x^3 + (z^2 -z)*x^2, y*x^6 + 3*y*x^5 + 3*y*x^4 + y*x^3; ring R16=integer,(x(1),x(2),x(3),x(4),x(5)),dp; ideal I=x(5)^5, x(1)*x(5)^4, x(1)*x(2)*x(5)^3, x(2)^2*x(5)^3, x(2)^2*x(3)*x(5)^2, x(1)*x(2)*x(3)*x(5)^2, x(1)*x(3)^2*x(5)^2, x(3)^3*x(5)^2, x(3)^3*x(4)*x(5), x(1)*x(3)^2*x(4)*x(5), x(1)*x(2)*x(3)*x(4)*x(5), x(2)^2*x(3)*x(4)*x(5), x(2)^2*x(4)^2*x(5), x(1)*x(2)*x(4)^2*x(5), x(1)*x(4)^3*x(5), x(4)^4*x(5); I=intersectZ(I,ideal(64*181,x(1)^2)); ring R17=integer,(x,y,z),dp; ideal I=374, (z+2)^8-140z6+2622*(z+2)^4-1820*(z+2)^2+169, 17y*(z+2)^4-374*y*(z+2)^2+221y+2z7-281z5+5240z3-3081z, 204y2+136yz3-3128yz+z6-149z4+2739z2+117, 17xz4-374xz2+221x+2z7-281z5+5240z3-3081z, 136xy-136xz-136yz+2z6-281z4+5376z2-3081, 204x2+136xz3-3128xz+z6-149z4+2739z2+117; ring R18=integer,(B,D,F,b,d,f),dp; ideal I=6, (b-d)*(B-D)-2*F+2, (b-d)*(B+D-2*F)+2*(B-D), (b-d)^2-2*(b+d)+f+1, B^2*b^3-1, D^2*d^3-1, F^2*f^3-1; ring R19=integer,(a,b,c,d,e,f),dp; ideal I=24, 2*(f+2)*b+2ec+d2+a2+a, 2*(f+2)*c+2ed+2ba+b, 2*(f+2)*d+e2+2ca+c+b2, 2*(f+2)*e+2da+d+2cb, (f+2)^2+2ea+e+2db+c2, 2*(f+2)*a+f+2eb+2dc; ring R20=integer,(x,y,z,w,u),dp; ideal I=24, 2x2-2y2+2z2-2w2+2u2-1, 2x3-2y3+2z3-2w3+2u3-1, 2x4-2y4+2z4-2w4+2u4-1, 2x5-2y5+2z5-2w5+2u5-1, 2x6-2y6+2z6-2w6+2u6-1; ring R21=integer,(x,y,z,t,u,v,h),dp; ideal I=66, 2x2+2y2+2z2+2t2+2u2+v2-vh, xy+yz+2zt+2tu+2uv-uh, 2xz+2yt+2zu+u2+2tv-th, 2xt+2yu+2tu+2zv-zh, t2+2xv+2yv+2zv-yh, 2x+2y+2z+2t+2u+v-h, x3+y3+z3+t3+u3+v3; ring R22=integer,(s,p,S,P,T,F,f),dp; ideal I=35, 2*T-S*s-2*F+2, 8*F*p-4*p*S-2*F*s^2+S*s^2+4*T-2*S*s, -2*s-4*p+s^2+f+1, s*T^2-p*s*P-p*S*T-2, p^3*P^2-1, F^2*f^3-1; ring R=integer,(x,y),(c,lp); module N=[0,0,xy2-x2-xy],[0,y,x],[0,x,2xy-x],[x,0,-xy],[0,0,18x]; ring R=integer,(x,y),(c,lp); module N=[0,0,xy2-x2-xy],[0,y,x],[0,x,2xy-x],[x,0,-xy],[0,0,18]; ring R=integer,(x,y),(c,lp); module N=[-y,7,0],[2y3-y2],[3x,y2],[2y-y2,x],[4,5x3]; ring r=integer,(x,y),(c,lp); module N=[0,0,xy2-x2-xy],[0,y,x],[0,x,xy-x],[x,0,-xy],[5x,0,0]; ring R2=integer,(a(1),a(2),a(3),b(1),b(2),b(3)),(c,lp); module N=[a(1)*b(1),a(2)*b(1),a(3)*b(1)],[a(1)*b(2),a(2)*b(2),a(3)*b(2)],[a(1)*b(3),a(2)*b(3),a(3)*b(3)]; ring R3=integer,(x,y,z),(c,lp); module N=[y2+z2,xy,xz],[xy,x2+z2,yz],[xz,yz,x2+y2]; ring R4=integer,(x,y,z,a,b,c),(c,lp); module N=[x3y2z2c,x2y3z2c,x2y2z3c],[x3y2z2b,x2y3z2b,x2y2z3b],[x3y2z2a,x2y3z2a,x2y2z3a]; */