// $Id: invar.lib,v 1.6 1998-05-05 11:55:30 krueger Exp $ /////////////////////////////////////////////////////// // invar.lib // algorithm for computing the ring of invariants under // the action of the additive group (C,+) // written by Gerhard Pfister ////////////////////////////////////////////////////// version="$Id: invar.lib,v 1.6 1998-05-05 11:55:30 krueger Exp $"; info=" LIBRARY: invar.lib PROCEDURES FOR COMPUTING INVARIANTS OF (C,+)-ACTIONS invariantRing(matrix m,poly p,poly q,int choose) // ring of invariants of the action of the additive group // defined by the vectorfield corresponding to the matrix m // (m[i,1] are the coefficients of d/dx(i)) // the polys p and q are assumed to be variables x(i) and x(j) // such that m[j,1]=0 and m[i,1]=x(j) // if choose=0 the computation stops if generators of the ring // of invariants are computed (to be used only if you know that // the ring of invariants is finitey generated) // if choose<>0 it computes invariants up to degree choose actionIsProper(matrix m) // returns 1 if the action of the additive group defined by the // matrix m as above i proper and 0 if not. "; /////////////////////////////////////////////////////////////////////////////// LIB "inout.lib"; LIB "general.lib"; /////////////////////////////////////////////////////////////////////////////// proc sortier(ideal id) { if(size(id)==0) { return(id); } intvec i=sortvec(id); int j; ideal m; for (j=1;j<=size(i);j++) { m[j] = id[i[j]]; } return(m); } example { "EXAMPLE:"; echo = 2; ring q=0,(x,y,z,u,v,w),dp; ideal i=w,x,z,y,v; ideal j=sortier(i); j; } /////////////////////////////////////////////////////////////////////////////// proc der (matrix m, poly f) "USAGE: der(m,f); m matrix, f poly RETURN: poly= application of the vectorfield m befined by the matrix m (m[i,1] are the coefficients of d/dx(i)) to f NOTE: EXAMPLE: example der; shows an example " { matrix mh=matrix(jacob(f))*m; return(mh[1,1]); } example { "EXAMPLE:"; echo = 2; ring q=0,(x,y,z,u,v,w),dp; poly f=2xz-y2; matrix m[6][1]; m[2,1]=x; m[3,1]=y; m[5,1]=u; m[6,1]=v; der(m,f); } /////////////////////////////////////////////////////////////////////////////// proc actionIsProper(matrix m) "USAGE: actionIsProper(m); m matrix RETURN: int= 1 if is proper, 0 else NOTE: EXAMPLE: example actionIsProper; shows an example " { int i; ideal id=maxideal(1); def bsr=basering; //changes the basering bsr to bsr[@t] execute "ring s="+charstr(basering)+",("+varstr(basering)+",@t),dp;"; poly inv,delta,tee,j; ideal id=imap(bsr,id); matrix @m[size(id)+1][1]; @m=imap(bsr,m),0; //computes the exp(@t*m)(var(i)) for all i for(i=1;i<=nvars(basering)-1;i++) { inv=var(i); delta=der(@m,inv); j=1; tee=@t; while(delta!=0) { inv=inv+1/j*delta*tee; j=j*(j+1); tee=tee*@t; delta=der(@m,delta); } id=id+ideal(inv); } i=inSubring(@t,id)[1]; setring(bsr); return(i); } example { "EXAMPLE:"; echo = 2; ring rf=0,(x(1..7)),dp; matrix m[7][1]; m[4,1]=x(1)^3; m[5,1]=x(2)^3; m[6,1]=x(3)^3; m[7,1]=(x(1)*x(2)*x(3))^2; actionIsProper(m); ring rd=0,(x(1..5)),dp; matrix m[5][1]; m[3,1]=x(1); m[4,1]=x(2); m[5,1]=1+x(1)*x(4)^2 actionIsProper(m); } /////////////////////////////////////////////////////////////////////////////// proc reduction(poly p, ideal dom, list #) "USAGE: reduction(p,dom,q); p poly, dom ideal, q (optional) monomial RETURN: poly= (p-H(f1,...,fr))/q^a, if Lt(p)=H(Lt(f1),...,Lt(fr)) for some polynomial H in r variables over the base field, a maximal such that q^a devides p-H(f1,...,fr), dom =(f1,...,fr) NOTE: EXAMPLE: example reduction; shows an example " { int i; int z=size(dom); def bsr=basering; //arranges the monomial v for elimination poly v=var(1); for (i=2;i<=nvars(basering);i=i+1) { v=v*var(i); } //changes the basering bsr to bsr[@(0),...,@(z)] execute "ring s="+charstr(basering)+",("+varstr(basering)+",@(0..z)),dp;"; //costructes the ideal dom=(p-@(0),dom[1]-@(1),...,dom[z]-@(z)) ideal dom=imap(bsr,dom); for (i=1;i<=z;i++) { dom[i]=lead(dom[i])-var(nvars(bsr)+i+1); } dom=lead(imap(bsr,p))-@(0),dom; //eliminates the variables of the basering bsr //i.e. computes dom intersected with K[@(0),...,@(z)] ideal kern=eliminate(dom,imap(bsr,v)); // test wether @(0)-h(@(1),...,@(z)) is in ker for some poly h poly h; z=size(kern); for (i=1;i<=z;i++) { h=kern[i]/@(0); if (deg(h)==0) { h=(1/h)*kern[i]; // defines the map psi : s ---> bsr defined by @(i) ---> p,dom[i] setring bsr; map psi=s,maxideal(1),p,dom; poly re=psi(h); // devides by the maximal power of #[1] if (size(#)>0) { while ((re!=0) && (re!=#[1]) &&(subst(re,#[1],0)==0)) { re=re/#[1]; } } return(re); } } setring bsr; return(p); } example { "EXAMPLE:"; echo = 2; ring q=0,(x,y,z,u,v,w),dp; poly p=x2yz-x2v; ideal dom =x-w,u2w+1,yz-v; reduction(p,dom); reduction(p,dom,w); } /////////////////////////////////////////////////////////////////////////////// proc completeReduction(poly p, ideal dom, list #) "USAGE: completeReduction(p,dom,q); p poly, dom ideal, q (optional) monomial RETURN: poly= the polynomial p reduced with dom via the procedure reduction as long as possible NOTE: EXAMPLE: example completeReduction; shows an example " { poly p1=p; poly p2=reduction(p,dom,#); while (p1!=p2) { p1=p2; p2=reduction(p1,dom,#); } return(p2); } example { "EXAMPLE:"; echo = 2; ring q=0,(x,y,z,u,v,w),dp; poly p=x2yz-x2v; ideal dom =x-w,u2w+1,yz-v; completeReduction(p,dom); completeReduction(p,dom,w); } /////////////////////////////////////////////////////////////////////////////// proc inSubring(poly p, ideal dom) "USAGE: inSubring(p,dom); p poly, dom ideal RETURN: list= 1,string(@(0)-h(@(1),...,@(size(dom)))) :if p = h(dom[1],...,dom[size(dom)]) 0,string(h(@(0),...,@(size(dom)))) :if there is only a nonlinear relation h(p,dom[1],...,dom[size(dom)])=0. NOTE: EXAMPLE: example inSubring; shows an example " { int z=size(dom); int i; def gnir=basering; list l; poly mile=var(1); for (i=2;i<=nvars(basering);i++) { mile=mile*var(i); } string eli=string(mile); // the intersection of ideal nett=(p-@(0),dom[1]-@(1),...) // with the ring k[@(0),...,@(n)] is computed, the result is ker execute "ring r1="+charstr(basering)+",("+varstr(basering)+",@(0..z)),dp;"; ideal nett=imap(gnir,dom); poly p; for (i=1;i<=z;i++) { execute "p=@("+string(i)+");"; nett[i]=nett[i]-p; } nett=imap(gnir,p)-@(0),nett; execute "ideal ker=eliminate(nett,"+eli+");"; // test wether @(0)-h(@(1),...,@(z)) is in ker l[1]=0; l[2]=""; for (i=1;i<=size(ker);i++) { if (deg(ker[i]/@(0))==0) { string str=string(ker[i]); setring gnir; l[1]=1; l[2]=str; return(l); } if (deg(ker[i]/@(0))>0) { l[2]=l[2]+string(ker[i]); } } setring gnir; return(l); } example { "EXAMPLE:"; echo = 2; ring q=0,(x,y,z,u,v,w),dp; poly p=xyzu2w-1yzu2w2+u4w2-1xu2vw+u2vw2+xyz-1yzw+2u2w-1xv+vw+2; ideal dom =x-w,u2w+1,yz-v; inSubring(p,dom); } /////////////////////////////////////////////////////////////////////////////// proc localInvar(matrix m, poly p, poly q, poly h) "USAGE: localInvar(m,p,q,h); m matrix, p,q,h poly RETURN: poly= the invariant of the vectorfield m=Sum m[i,1]*d/dx(i) with respect to p,q,h, i.e. Sum (-1)^v*(1/v!)*m^v(p)*(q/m(q))^v)*m(q)^N, m^N(q)=0, m^(N-1)(q)<>0 it is assumed that m(q) and h are invariant the sum above is divided by h as much as possible NOTE: EXAMPLE: example localInvar; shows an example " { if ((der(m,h) !=0) || (der(m,der(m,q)) !=0)) { "the last variable defines not an invariant function "; return(q); } poly inv=p; poly dif= der(m,inv); poly a=der(m,q); poly sgn=-1; poly coeff=sgn*q; int k=1; if (dif==0) { return(inv); } while (dif!=0) { inv=(a*inv)+(coeff*dif); dif=der(m,dif); k=k+1; coeff=q*coeff*sgn/k; } while ((inv!=0) && (inv!=h) &&(subst(inv,h,0)==0)) { inv=inv/h; } return(inv); } example { "EXAMPLE:"; echo = 2; ring q=0,(x,y,z),dp; matrix m[3][1]; m[2,1]=x; m[3,1]=y; poly in=localInvar(m,z,y,x); in; } /////////////////////////////////////////////////////////////////////////////// proc furtherInvar(matrix m, ideal id, ideal karl, poly q) "USAGE: furtherInvar(m,id,karl,q); m matrix, id,karl ideal,q poly RETURN: ideal= further invariants of the vectorfield m=Sum m[i,1]*d/dx(i) with respect to id,p,q, i.e. the ideal id contains invariants of m and we are looking for elements in the subring generated by id which are divisible by q it is assumed that m(p) and q are invariant the elements mentioned above are computed and divided by q as much as possible the ideal karl contains all invariants computed yet NOTE: EXAMPLE: example furtherInvar; shows an example " { int i; ideal null; int z=size(id); intvec v; def @r=basering; ideal su; for (i=1;i<=z;i++) { su[i]=subst(id[i],q,0); } // defines the map phi : r1 ---> @r defined by // y(i) ---> id[i](q=0) execute "ring r1="+charstr(basering)+",(y(1..z)),dp"; setring @r; map phi=r1,su; setring r1; // computes the kernel of phi execute "ideal ker=preimage(@r,phi,null)"; // defines the map psi : r1 ---> @r defined by y(i) ---> id[i] setring @r; map psi=r1,id; // computes psi(ker(phi)) ideal rel=psi(ker); // devides by the maximal power of q // and tests wether we really obtain invariants for (i=1;i<=size(rel);i++) { while ((rel[i]!=0) && (rel[i]!=q) &&(subst(rel[i],q,0)==0)) { rel[i]=rel[i]/q; if (der(m,rel[i])!=0) { "error in furtherInvar, function not invariant"; rel[i]; } } rel[i]=simplify(rel[i],1); } // test whether some variables occur linearly // and deletes the corresponding invariant function setring r1; int j; for (i=1;i<=size(ker);i=i+1) { for (j=1;j<=z;j++) { if (deg(ker[i]/y(j))==0) { setring @r; rel[i]= completeReduction(rel[i],karl,q); if(rel[i]!=0) { karl[j+1]=rel[i]; rel[i]=0; } setring r1; } } } setring @r; list l=rel+null,karl; return(l); } example { "EXAMPLE:"; echo = 2; ring r=0,(x,y,z,u),dp; matrix m[4][1]; m[2,1]=x; m[3,1]=y; m[4,1]=z; ideal id=localInvar(m,z,y,x),localInvar(m,u,y,x); ideal karl=id,x; list in=furtherInvar(m,id,karl,x); in; } /////////////////////////////////////////////////////////////////////////////// proc invariantRing(matrix m, poly p, poly q,list #) "USAGE: invariantRing(m,p,q); m matrix, p,q poly RETURN: ideal= the invariants of the vectorfield m=Sum m[i,1]*d/dx(i) p,q variables with m(p)=q invariant NOTE: EXAMPLE: example furtherInvar; shows an example " { ideal j; int i,it; int bou=-1; if(size(#)>0) { bou=#[1]; } int z; ideal karl; ideal k1=1; list k2; // computation of local invariants for (i=1;i<=nvars(basering);i++) { karl=karl+localInvar(m,var(i),p,q); } if(bou==0) { " "; "the local invariants:"; " "; karl; // pause; " "; } // computation of further invariants it=0; while (size(k1)!=0) { // test if the new invariants are already in the ring generated // by the invariants we constructed already it++; karl=sortier(karl); j=q; for (i=1;i<=size(karl);i++) { j=j+ simplify(completeReduction(karl[i],j,q),1); } karl=j; j[1]=0; j=simplify(j,2); k2=furtherInvar(m,j,karl,q); k1=k2[1]; karl=k2[2]; k1=sortier(k1); z=size(k1); for (i=1;i<=z;i++) { k1[i]= completeReduction(k1[i],karl,q); if (k1[i]!=0) { karl=karl+simplify(k1[i],1); } } if(bou==0) { " "; "the invariants after the iteration"; it; " "; karl; // pause; " "; } if((bou>0) && (size(k1)>0)) { if(deg(k1[size(k1)])>bou) { return(karl); } } } return(karl); } example { "EXAMPLE:"; echo = 2; //Winkelmann: free action but Spec k[x(1),...,x(5)]---> Spec In- //variantring is not surjective ring rw=0,(x(1..5)),dp; matrix m[5][1]; m[3,1]=x(1); m[4,1]=x(2); m[5,1]=1+x(1)*x(4)+x(2)*x(3); ideal in=invariantRing(m,x(3),x(1),0); in; //Deveney/Finston: The ring of invariants is not finitely generated ring rf=0,(x(1..7)),dp; matrix m[7][1]; m[4,1]=x(1)^3; m[5,1]=x(2)^3; m[6,1]=x(3)^3; m[7,1]=(x(1)*x(2)*x(3))^2; ideal in=invariantRing(m,x(4),x(1),6); in; //Deveney/Finston:Proper Ga-action which is not locally trivial //r[x(1),...,x(5)] is not flat over the ring of invariants ring rd=0,(x(1..5)),dp; matrix m[5][1]; m[3,1]=x(1); m[4,1]=x(2); m[5,1]=1+x(1)*x(4)^2; ideal in=invariantRing(m,x(3),x(1)); in; actionIsProper(m); //computes the relations between the invariants int z=size(in); ideal null; ring r1=0,(y(1..z)),dp; setring rd; map phi=r1,in; setring r1; ideal ker=preimage(rd,phi,null); ker; //the discriminant ring r=0,(x(1..2),y(1..2),z,t),dp; poly p=z+(1+x(1)*y(2)^2)*t+x(1)*y(1)*y(2)*t^2+(1/3)*x(1)*y(1)^2*t^3; matrix m[5][5]; m[1,1]=z; m[1,2]=x(1)*y(2)^2+1; m[1,3]=x(1)*y(1)*y(2); m[1,4]=1/3*x(1)*y(1)^2; m[1,5]=0; m[2,1]=0; m[2,2]=z; m[2,3]=x(1)*y(2)^2+1; m[2,4]=x(1)*y(1)*y(2); m[2,5]=1/3*x(1)*y(1)^2; m[3,1]=x(1)*y(2)^2+1; m[3,2]=2*x(1)*y(1)*y(2); m[3,3]=x(1)*y(1)^2; m[3,4]=0; m[3,5]=0; m[4,1]=0; m[4,2]=x(1)*y(2)^2+1; m[4,3]=2*x(1)*y(1)*y(2); m[4,4]=x(1)*y(1)^2; m[4,5]=0; m[5,1]=0; m[5,2]=0; m[5,3]=x(1)*y(2)^2+1; m[5,4]=2*x(1)*y(1)*y(2); m[5,5]=x(1)*y(1)^2; poly disc=9*det(m)/(x(1)^2*y(1)^4); LIB "invar.lib"; matrix n[6][1]; n[2,1]=x(1); n[4,1]=y(1); n[5,1]=1+x(1)*y(2)^2; der(n,disc); //x(1)^3*y(2)^6-6*x(1)^2*y(1)*y(2)^3*z+6*x(1)^2*y(2)^4+9*x(1)*y(1)^2*z^2-18*x(1)*y(1)*y(2)*z+9*x(1)*y(2)^2+4 //constructive approach to Weizenbcks theorem int n=5; ring w=0,(x(1..n)),wp(1..n); // definition of the vectorfield m=sum m[i]*d/dx(i) matrix m[n][1]; int i; for (i=1;i<=n-1;i=i+1) { m[i+1,1]=x(i); } ideal in=invariantRing(m,x(2),x(1),0); in; }