Opened 8 years ago

Closed 8 years ago

#731 closed bug (fixed)

problem with latex.lib

Reported by: yena@… Owned by: somebody
Priority: dontKnow Milestone: Release 4-0-0
Component: singular-libs Version: 4-0-2
Keywords: latex.lib Cc: hannes

Description

Liebes Singular-Team,

ich habe gerade ein Problem mit latex.lib entdeckt.

Ich glaube es hat etwas damit zu tun, dass man die Schreibweise der Koeffizienten in Ringen mit Parametern geändert hat.

Liebe Grüße,

Oleksandr Iena

Hier ist ein typisches Beispiel.

//--------------------------------
LIB "latex.lib";

//a rather small problem
ring q=(0,R),( c), dp;
poly f=   (R^2-R)*c;
f;
// this works
texobj("", f);
//now multiply f by 1/2
f=1/2*f;
f;
//this gives a wrong result
// the fraction is empty
//one bracket is either missing or too much
texobj("", f);


//one can make the problem even worse

ring q1=(0,R),( c(1)), dp;
poly f=   (R^2-R)*c(1);
f;
// this works
texobj("", f);
//now multiply f by 1/2
f=1/2*f;
f;
//this time it does not even return something, 
//it looks like nothing happens,
// one needs to abort the process
texobj("", f);
$
//---------------------------------------

So sieht es bei mir aus:

                     SINGULAR                                 /
 A Computer Algebra System for Polynomial Computations       /   version 4.0.2
                                                           0<
 by: W. Decker, G.-M. Greuel, G. Pfister, H. Schoenemann     \   Feb 2015
FB Mathematik der Universitaet, D-67653 Kaiserslautern        \
bug_latex_lib.sng   1> LIB "latex.lib";
// ** loaded /usr/bin/../share/singular/LIB/latex.lib (4.0.0.0,Jun_2013)
// ** loaded /usr/bin/../share/singular/LIB/inout.lib (4.0.0.0,Jun_2013)
bug_latex_lib.sng   2> 
bug_latex_lib.sng   3. //a rather small problem
bug_latex_lib.sng   4. ring q=(0,R),( c), dp;
bug_latex_lib.sng   5> poly f=   (R^2-R)*c;
bug_latex_lib.sng   6> f;
(R2-R)*c
bug_latex_lib.sng   7> // this works
bug_latex_lib.sng   8. texobj("", f);
$$
\begin{array}{rl}
& (R^{2}-R)\cdot c\\
\end{array}
$$
bug_latex_lib.sng   9> //now multiply f by 1/2
bug_latex_lib.sng  10. f=1/2*f;
bug_latex_lib.sng  11> f;
(R2-R)/2*c
bug_latex_lib.sng  12> //this gives a wrong result
bug_latex_lib.sng  13. texobj("", f);
$$
\begin{array}{rl}
& (R^{2}-R)\frac{}{})\cdot c\\
\end{array}
$$
bug_latex_lib.sng  14> 
bug_latex_lib.sng  15. 
bug_latex_lib.sng  16. //one can make the problem even worse
bug_latex_lib.sng  17. 
bug_latex_lib.sng  18. ring q1=(0,R),( c(1)), dp;
bug_latex_lib.sng  19> //echo=2;
bug_latex_lib.sng  20. poly f=   (R^2-R)*c(1);
bug_latex_lib.sng  21> f;
(R^2-R)*c(1)
bug_latex_lib.sng  22> // this works
bug_latex_lib.sng  23. texobj("", f);
$$
\begin{array}{rl}
& (R^{2}-R)\cdot c_{1}\\
\end{array}
$$
bug_latex_lib.sng  24> //now multiply f by 1/2
bug_latex_lib.sng  25. f=1/2*f;
bug_latex_lib.sng  26> f;
(R^2-R)/2*c(1)
bug_latex_lib.sng  27> //this time it does not even return something, one needs to abort the process
bug_latex_lib.sng  28. texobj("", f);
// ** Interrupt at cmd:`and` in line:'whileif (!(s[i]>="0" and s[i]<="9")) break;'
abort after this command(a), abort immediately(r), print backtrace(b), continue(c) or quit Singular(q) ?
halt 2

Attachments (2)

latex.lib (86.1 KB) - added by gorzel 8 years ago.
bugfix for denominators
latex.2.lib (86.1 KB) - added by gorzel 8 years ago.

Download all attachments as: .zip

Change History (5)

Changed 8 years ago by gorzel

Attachment: latex.lib added

bugfix for denominators

Changed 8 years ago by gorzel

Attachment: latex.2.lib added

comment:1 Changed 8 years ago by gorzel

Cc: hannes added

Hallo Oleksandr,

hier ist ein Patch. Dein Beispiel lauft nun durch:

> LIB "latex.lib";
> ring q=(0,R),( c), dp;
> poly f=   (R^2-R)*c;
> f;
(R2-R)*c
> texobj("", f);
$$
\begin{array}{rl}
& (R^{2}-R)\cdot c\\
\end{array}
$$
> f=1/2*f;
> f;
(R2-R)/2*c
> texobj("", f);
$$
\begin{array}{rl}
& \frac{R^{2}-R}{2}\cdot c\\
\end{array}
$$
> 
. 
. ring q1=(0,R),( c(1)), dp;
> poly f=   (R^2-R)*c(1);
> f;
(R^2-R)*c(1)
> 
. texobj("", f);
$$
\begin{array}{rl}
& (R^{2}-R)\cdot c_{1}\\
\end{array}
$$
> f=1/2*f;
> f;
(R^2-R)/2*c(1)
> texobj("", f);
$$
\begin{array}{rl}
& \frac{R^{2}-R}{2}\cdot c_{1}\\
\end{array}
$$

Da nun die Ausgabe des Nenners bei Ringen anders ist, je nachdem ob ein Minimalpolynom gesetzt ist, hier noch ein weiterer Test:

ring ra =(0,a),(x,y,z),dp;
>  poly f = 1/(a2+2)*x2+2/a*x +(a+1)/3;
>  f;
1/(a2+2)*x2+2/(a)*x+(a+1)/3 // <-- Nenner ausserhalb der Klammer
>  texpoly("",f);                      
$\frac{1}{a^{2}+2}\cdot x^{2}+\frac{2}{a}\cdot x+\frac{a+1}{3}$

>  ring ra_mipo = (0,a),(x,y),dp;
>  minpoly = a2-a+1;
>  poly f = 1/(a2+2)*x2+2/a*x +(a+1)/3;  
>  f;       
(-1/3a+2/3)*x2+(-2a+2)*x+(1/3a+1/3)  // <-- Nenner innerhalb der Klammer
>  texpoly("",f);
$-(\frac{1}{3}a-\frac{2}{3})\cdot x^{2}-(2a-2)\cdot x+(\frac{1}{3}a+\frac{1}{3})$

Dies library muesste nun jemand einchecken.

Allgemeine Frage, an wen auch immer:

Weshalb wurde etwas fuer den Typ qring geaendert?

Meine Abfragen

       if (typeofd=="ring" or typeofd=="qring")

wurden zu

if (typeofd=="ring") { return(texring("",d));} 

bzw.:

 if (size(ideal(r))>0) /*qring*/  

(Dass attachment ist dopppelt)

comment:2 Changed 8 years ago by hannes

Antwort zur Frage: im Rahmen allgemeinerer Ringe ist der Typ von R/I "ring". (Es gibt keine Objekte vom Typ "qring" in Singular 4)

comment:3 Changed 8 years ago by hannes

Resolution: fixed
Status: newclosed
Note: See TracTickets for help on using tickets.