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1. INTRODUCTION

The design of the complete algorithm is based on eight theorems. Since most of them share the same
conditions and abbreviations, we first state these specifications. Then we summarize the contents of this
paper and put them in order with the efficient reliable polynomial rootfinding methods already known.

Specifications. Let Jm := {1, . . . ,m} form ∈ N1 := {1, 2, . . . } and let z1, . . . , zk, k ∈ N1 \ {1}, be
complex numbers with zg ̸= zh for g, h ∈ Jk, g ̸= h, and 0 < |z1| ≤ · · · ≤ |zk|. A polynomial p(z) is
given by p(z) =

∑m
i=0 aiz

i with ai ∈ C, i ∈ Jm, am ̸= 0 and a0 = −1. It denotes either the original
polynomial, a shift of it or a polynomial obtained by deflation. In the product representation p(z) =
am

∏k
j=1(z − zj)mj with mj ∈ N1 the roots z1, . . . , zk are complex numbers with properties specified

above. If not stated otherwise, the index j ranges in Jk, and the index n is in N0 := N1 ∪ {0}. For
example, (qn)n denotes the sequence (qn)n∈N0 .

Throughout this paper the following abbreviations are used:

sn :=
k∑
j=1

mjz
−n
j , k(n) := min{k ∈ N1 | k > n and sk ̸= 0}, qn :=

sn
sk(n)

,

Z := {z1, . . . , zk}, Z1 := {z ∈ C | p′(z) = 0},

µj := min
{
d ∈ R | there is a g ∈ Jk \ {j} with d = |zg − zj |

}
, µ := min{µ1, . . . , µk},

ht(u) := u− t
p(u)
p′(u)

for t ∈ Jm ∪
{
m

2

}
and u ∈ C \ Z1.

In Section 2 we start with Newton’s formulas connecting the sums of powers sn with the coefficients
of p(z). Since the sums of powers are fundamental for the mathematical derivation given here, the
method is called Sums of Powers Algorithm (SPA). The essential theoretical results were published
in [1]. But many of the facts which let the corresponding rootfinding program fulfill the criteria of [2]
have been developed and tested by D. Gunsthövel who planned to write a dissertation in this field. For
example, in Theorem 1 he has found the explicit a priori lower bound for the number of steps needed to
get the desired accuracy depending on a fixed upper bound of |z1/z2|.

The basic recursion formula for qn is stated in Theorem 2. This is one of six results which in similar
form are also contained in [1].

In Section 3 the error bounds and two stopping criteria are developed. They are connected with
“Laguerre disks” which, by definition, are the closed disks having any u ∈ C \ (Z ∪ Z1) and hm(u) as
endpoints of a diameter. It is known from function theory that every Laguerre disk contains at least one
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root of p(z). Moreover, the radius is bounded from above and below by constant multiples of the distance
between {u} and Z if the distance is sufficiently small.

In Section 4 the “second phase” of the SPA is established which solves the convergence problem of
the Bernoulli method if |z1/z2| is close or equal to 1. At first, the minimal absolute value of the roots
is approximated by a number r only using the quotients qn calculated in the “first phase”. Afterwards,
local minima of (

t→ |p(r cos t+ ir sin t)|2, t ∈ [0, 2π[
)

are determined with the help of the Fourier expansion of this function. Then, after shifting to the
corresponding points in C, the SPA gives quotient sequences which normally converge sufficiently fast
to roots with absolute values close to r.

In Section 5 “chained minimum circles and modified Turán circles” are used to handle the “ultimate
case”. In this way, the SPA becomes absolutely reliable with good worst case complexity. Moreover,
the interplay of quotient sequences and Laguerre disks enables us in Section 6 to separate all roots in
disjoint disks and to overcome the deflation error. The last part is devoted to Newton–Raphson iteration.
The same condition which has been used for the first stopping criterion in Section 3 now ensures at least
quadratic convergence of the sequence (un)n generated by un+1 := h1(un), n ∈ N 0, if the single root
contained in the Laguerre disk of u0 has multiplicity 1.

Several survey articles and bibliographies on polynomial rootfinding have been published during the
last thirty years (e.g. [3]). Therefore, only some supplementary remarks shall help to compare the SPA
with efficient reliable methods already known. The properties of the SPA are similar to those of the
Jenkins–Traub algorithm [4] which indeed starts with a reformulation of Bernoulli iteration. There are
two major differences, namely, the SPA doesn’t directly lead to quadratic convergence, but it makes up
for this by not depending on any unsure decisions. In fact, it can be used to determine the critical number
s in Stage Two of the Jenkins–Traub algorithm. As well, it is able to produce satisfactory starting
values for the Dochev–Durand–Kerner–Weierstrass algorithm [5] which simultaneously determines
approximations for all roots.

Since the SPA immediately works with numbers which have the same order as the roots, its
efficiency is quite good compared with other methods which use disks or circles, namely, the Cohn–
Lehmer–Schur algorithm [6] which encloses the roots by two-dimensional bisection and the Henrici–
Schönhage–Weyl algorithm [7] which factors polynomials with the help of contour integrals.

2. PROPERTIES OF SUMS OF POWERS

If p(z) is a polynomial as specified above, then the sums of powers sn for n ∈ N1 can be determined
recursively with Newton’s formulas:

sn =



n−1∑
j=1

ajsn−j + nan when n ≤ m,

m∑
j=1

ajsn−j when n > m.

(1)

Theorem 1. Let z1, . . . , zk be complex numbers as specified above with |z1| < |z2| and |z1| ≤ b,
where b may be chosen suitably. If ε and κ are real numbers with 0 < ε ≤ 2b and |z1/z2| ≤ κ < 1,
then |qn − z1| < ε holds for every n ∈ N0 with

n ≥
[
(log κ−1)−1 log(4mbε−1)

]
+ 1. (2)

Proof. If k = 1, then we have sn = mz−n1 and therefore qn = z1 for every n ∈ N0. In the case k > 1
we write sn = z−n1 (m1 +m2ζ

n
2 + · · · +mkζ

n
k ) with ζj := z1/zj for j = 2, . . . , k. Since |m2ζ

n
2 + · · · +

mkζ
n
k | ≤ mκn, it follows that

|m1 +m2ζ
n
2 + · · · +mkζ

n
k | ≥

1
2

for all n ≥ log(2m)
− log κ

=: n0.
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In particular, we get sn ̸= 0 and therefore k(n) = n+ 1 for n ≥ n0. For these n, we have

qn − z1 = z1

( k∑
j=2

mjζ
n
j (1 − ζj)

)(
m1 +

k∑
j=2

mjζ
n+1
j

)−1

,

from which |qn − z1| ≤ |z1|4mκn follows. Hence for every n ∈ N0 with

n >
log(4mbε−1)

log κ−1
≥ n0

we get |qn − z1| < ε.

Based on extensive tests, (log 1/0.71 . . .)−1 = 3.0 has been chosen as the first factor of (2) for the
implementation of the SPA. This means that the number of steps on the right-hand side of (2) will give
the desired accuracy if |z2| ≥ 1.4 |z1|. As derived in Section 4, a failure is not disadvantageous because
the quotients |z1/z2| can be decreased with the help of suitable substitutions. Then this “stepfactor”
will be chosen as 2.0 which is equivalent with |z2| ≥ 1.65 |z1|. The tests have led to the insight that a
relatively small stepfactor is sufficient for the efficiency and reliability of the SPA independently of the
type of the polynomial. This can also be verified with the program [9].

Since (sn)n or (s−1
k(n))n may be unbounded, even if (qn)n is bounded, a new recursion formula for qn is

decisive for the efficiency of the SPA. Each sequence (qn)n is called Bernoulli sequence. For instance,
in the second case of (1) with sk ̸= 0 for every k ∈ N1, it follows that

q−1
n = sn+1s

−1
n = a1 + a2sn−1s

−1
n + · · · + amsn+1−ms

−1
n

= a1 + a2qn−1 + · · · + amqn+1−m · · · qn−2qn−1 = a1 + (a2 + (. . . )qn−2)qn−1.

Theorem 2. Let p(z) be a polynomial as specified above. Then k(0) = min{k ∈ Jm | ak ̸= 0} and
q0 = m(k(0)ak(0))−1. Assume k(s) and qs to be known for s = max {0, n−m}, . . . , n− 1. Then k(n)
and qn can be calculated as follows.

For s = max {0, n−m}, . . . , n− 1 and for t ∈ Jm, introduce

q(s+t)s :=


qs when s > 0, qs ̸= 0,
1 when s > 0, qs = 0,
t(k(0)ak(0))−1 when s = 0,

a
(s+t)
t :=

{
at when qs ̸= 0,
0 when qs = 0.

In the case k(n− 1) = n, define

pn,k := ak−n +
min{k,m}∑
t=k−n+1

(
a

(k)
t

n−1∏
s=k−t

q(k)s

)
(3)

for k = n+ 1, . . . , n+m. Then k(n) = n+ min {j ∈ Jm | pn,n+j ̸= 0} and qn = p−1
n,k(n) hold. For

k(n− 1) > n, it follows that k(n) = k(n− 1) and qn = 0.

Proof. Let r := min{k ∈ Jm | ak ̸= 0}. Since 1 ≤ r ≤ m, we have

sr =
r−1∑
j=1

ajsr−j + rar = rar ̸= 0

and sn = 0 for 1 ≤ n < r. Thus it follows that k(0) = r and q0 = ms−1
r = m(rar)−1.

The condition k(n− 1) = n is equivalent with sn ̸= 0. Then, for k = n+ 1, we get

sks
−1
n = a1 +

min{k,m}∑
t=2

at(s
(k)
k−ts

−1
n )

with s(k)j := sj for j > 0 and s(k)0 := k.
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For t < k, we extend each quotient s(k)k−ts
−1
n by every sj for which k − t < j < n and sj ̸= 0 hold.

Forming the quotients of every two of these sj succeeding each other, sk−t and sn included, we get the

product of qk−t with each qs for which k − t < s < n and qs ̸= 0. Writing these qs in the form q
(k)
s and

supplementing the missing qs with k − t < s < n as factors q(k)s with q(k)s = 1, gives

at(s
(k)
k−ts

−1
n ) = atqk−t

n−1∏
s=k−t+1

q(k)s = a
(k)
t

n−1∏
s=k−t

q(k)s .

For t = k, the quotient s(k)0 s−1
n can be rewritten analogously as a product with the factor q(k)0 = ks−1

k(0) =

k(k(0)ak(0))−1. Then the modified sum is

sn+1s
−1
n = a1 +

min{n+1,m}∑
t=2

(
a

(n+1)
t

n−1∏
s=n+1−t

q(n+1)
s

)
= pn,n+1.

Particularly, we have pn,n+1 ̸= 0 if and only if sn+1 ̸= 0. In this case we get qn = p−1
n,n+1.

Moreover, the equivalence of sn+1 = 0 and pn,n+1 = 0 constitutes the basis step of the proof by
mathematical induction for the equivalence of the corresponding propositions sj = 0 and pn,j = 0 –
each for j = n+ 1, . . . , k with k < k(n). Here, k(n) ≤ n+m holds because otherwise (1) would lead to
sk(n) =

∑m
j=1 ajsk(n)−j = 0 which contradicts the definition of k(n).

For the inductive step, assume that the equivalence is already known for j = n+ 1, . . . , k − 1. From
sn ̸= 0 and sn+1 = · · · = sk−1 = 0, it follows as above

sks
−1
n = ak−n +

min{k,m}∑
t=k−n+1

at(s
(k)
k−ts

−1
n ) = ak−n +

min{k,m}∑
t=k−n+1

(
a

(k)
t

n−1∏
s=k−t

q(k)s

)
= pn,k.

Therefore the equivalence is also valid for j = n+ 1, . . . , k. Particularly, we get k(n) = min{k ∈ N1 |
k > n and pn,k ̸= 0}. Moreover, from sn+1 = · · · = sk(n)−1 = 0, it follows that sk(n)s

−1
n = pn,k(n) which

gives qn = p−1
n,k(n).

The inequality k(n− 1) > n is equivalent with sn = 0 which leads to k(n− 1) = k(n) and qn =
sns

−1
k(n) = 0.

3. ERROR BOUNDS AND STOPPING CRITERIA

The error bounds and stopping criteria are based on the following result of Laguerre [8].

Theorem 3. If u ∈ C \ (Z ∪ Z1), then each circle passing through u and hm(u) has the property
that either there are elements of Z inside and outside the circle or that all numbers of Z lie on the
circle.

Proof. We start from the well-known equation

p′(u)
p(u)

=
k∑
j=1

mj

u− zj
for u ∈ C \ Z. (4)

With v := hm(u), we get

0 =
k∑
j=1

mj

(
a

u− zj
− a

u− v

)
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for every a ∈ C. If C is a circle through u and v, then there exists a unique number a ∈ C with |a| = 1,
such that the injective function

f :=
(
w → a

u− w
− a

u− v
, w ∈ C \ {u}

)
maps v to 0, C \ {u} to the real axis and the interior of C to the upper half-plane {z ∈ C | Im z > 0}.
Moreover, we have 0 =

∑k
j=1mjf(zj). Therefore either there is at least one element of f(Z) in the

upper half-plane and at least one in the lower half-plane or f(Z) contains only real numbers. Then the
mapping properties of f yield the corresponding result with respect to the circle C.

Especially, the closed disk

Lu = Lu(p) := {w ∈ C | |w − hm/2(u)| ≤ |u− hm/2(u)|}

which we call Laguerre disk of u, contains at least one root of p. The following theorem proves that the
radius of Lu is less than m|u− zj |, if u is sufficiently close to zj ∈ Z . From this we obtain the stopping
criterion in the first two stages.

Theorem 4. Let p(z) be a polynomial as specified above with k ≥ 2. If zj ∈ Z , then

|u− zj | < m

∣∣∣∣ p(u)p′(u)

∣∣∣∣ ≤ 2m− 1
2mj − 1

|u− zj | (5)

and Lu ∩ Z = {zj} hold for every u ∈ C with 0 < |u− zj | ≤ µj/(2m).

Proof. From (4) for u ∈ C \ Z1, we get

m

∣∣∣∣ p(u)p′(u)

∣∣∣∣ =
m

|mj + Sj |
|u− zj | with Sj :=

∑
g∈Jk\{j}

mg
u− zj
u− zg

.

The assumption on u leads to

2m|u− zj | ≤ |zg − zj | ≤ |u− zg| + |u− zj |.

This gives

u− zj
u− zg

≤ 1
2m− 1

for every g ∈ Jk \ {j}.

Then, with

|Sj | ≤
m−mj

2m− 1
, (6)

we have

m

∣∣∣∣ p(u)p′(u)

∣∣∣∣ ≤ m

mj − |Sj |
|u− zj | ≤

2m− 1
2mj − 1

|u− zj |.

Now we assume that another zero zl with l ∈ Jk \ {j} is contained in the interior of Lu. Then,
with the abbreviation du := m|p(u)/p′(u)| for the diameter of Lu, we have |zl − hm/2(u)| < du/2 and
du ≤ (1 − 1/(2m))µj . It follows that

|zj − zl| =
∣∣∣∣(zj − u) +

(
1
2
u− 1

2
hm(u)

)
− (zl − hm/2(u))

∣∣∣∣
≤ |zj − u| + 1

2
du +

1
2
du <

1
2m

µj +
(

1 − 1
2m

)
µj = µj
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which contradicts |zj − zl| ≥ µj . If there were no zeros in the interior of Lu, then by Theorem 3 all zeros
of p must lie on the boundary of Lu. This would give

|zj − zl| ≤ du ≤
(

1 − 1
2m

)
µj

for every l ∈ Jk \ {j} contradicting |zj − zl| ≥ µj as above. Hence zj is the only zero of p in Lu. Since
zj lies in the interior of Lu, the first inequality of (5) follows with Theorem 3 from

|zj − u| − 1
2
du = |zj − u| − |u− hm/2(u)| ≤ |zj − hm/2(u)| <

1
2
du =

m

2

∣∣∣∣ p(u)p′(u)

∣∣∣∣.
Since the a priori number of steps determined by (2) covers a wide range of “convergence quotients”

|z1/z2|, it is desirable to have a simple pre-check instead of directly testing the stopping condition
m|p(qn)/p′(qn)| ≤ ε from (5). This can be arranged with the help of the following theorem.

Theorem 5. Let p(z) be a polynomial as specified above with k ≥ 3. If |z1| < |z2| < |z3|, then the
sequences (

qn+1 − qn+2

qn − qn+1

)
n

and
(

(qn+1 − qn)
p′(qn)
p(qn)

)
n

are convergent with limits z1/z2 andm1(z1/z2 − 1) respectively. From the second result, it follows
that

|qn+1 − qn| < 2m
∣∣∣∣ p(qn)p′(qn)

∣∣∣∣ (7)

holds for sufficiently large n.

Proof. Using the abbreviation τg := m2 +
∑k

j=3mj(z2/zj)g for g ∈ N1, we have

qn − z1 = z1ζ
n
2

τn − ζ2τn+1

m1 + ζn+1
2 τn+1

from the proof of Theorem 1 and we get

qn − qn+1 = z1ζ
n
2

m1(τn − 2ζ2τn+1 + ζ2
2τn+2) + ζn+2

2 (τnτn+2 − τ2
n+1)

(m1 + ζn+1
2 τn+1)(m1 + ζn+2

2 τn+2)
.

Since limn→∞ τn = m2 and limn→∞ ζn2 = 0, it follows that ((qn+1 − qn+2)/(qn − qn+1))n is convergent
with limit ζ2 = z1/z2.

From (4), we obtain

(qn+1 − qn)
p′(qn)
p(qn)

= m1
qn+1 − qn
qn − z1

+ (qn+1 − qn)
k∑
j=2

mj

qn − zj
.

As above, we find that ((qn+1 − qn)/(qn − z1))n converges to ζ2 − 1. Therefore we have

lim
n→∞

(
(qn+1 − qn)

p′(qn)
p(qn)

)
= m1

(
z1
z2

− 1
)
.

With m1 ≤ m− 2 and |z1/z2| < 1, it follows that there exists a number n1 such that |qn+1 − qn| <
2m|p(qn)/p′(qn)| for every n ∈ N1 with n ≥ n1.
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4. THE MINIMUM METHOD

Let nε be the bound on the right-hand side of (2). Even if the first nε terms of the sequence (qn)n
don’t approximate z1 sufficiently, they can be used to approximate |z1| in the following way.

Theorem 6. Let z1, . . . , zk be complex numbers as specified above, and let h(n) be recursively
defined by h(0) := k(0) and h(j + 1) := k(h(j)) for every j ∈ N0. If cn := |ms−1

h(n)|
1/h(n) for n ∈ N0,

then |z1| is the limit of the sequence (σn)n with

σn := min
{
s ∈ R | there exists a j ∈ N0 with h(j) ≤ max{h(0), n} and s = cj

}
for n ∈ N0 which consists of the “successive minima” of (cn)n. Moreover, |z1| is bounded by

5−2−ν
σm2ν < |z1| ≤ σm2ν for each ν ∈ N0. (8)

The powers ch(n)
n can be calculated recursively by

c
h(0)
0 = |q0|, c

h(n+1)
n+1 = ch(n)

n |qh(n)| for every n ∈ N0.

Proof. By definition and using the triangle inequality, we get

|sh(n)|1/h(n) = |z1|−1

∣∣∣∣1 +
(
z1
z2

)h(n)

+ · · · +
(
z1
zm

)h(n)∣∣∣∣1/h(n)

≤ |z1|−1m1/h(n).

This gives

|z1| ≤ cn for each n ∈ N0. (9)

Thus the monotone decreasing sequence (σn)n has the lower bound |z1|. Therefore its convergence
follows from the Bolzano–Weierstrass Theorem (on bounded monotone sequences). Hence to prove
that |z1| is the limit of (σn)n, it suffices to determine a subsequence having |z1| as limit. This can be done
with the following result of Turán [10]. Let

σ⋆m2ν :=
(

max
l∈Jm

∣∣∣∣ 1
m
sl2ν

∣∣∣∣2−ν/l)−1

for ν ∈ N0. (10)

Then |z1| is bounded by

5−2−ν
σ⋆m2ν < |z1| ≤ σ⋆m2ν for every ν ∈ N0. (11)

The lower estimate with ν = 0 was found by Buchholtz. The general case was derived by Turán from
Buchholtz’s result. The proofs are given in [10].

If Nν := {l ∈ Jm | sl2ν ̸= 0}, then σ⋆m2ν = minl∈Nν |ms−1
l2ν |2

−ν/l, and for each l ∈ Nν there exists a

j ∈ N0 with h(j) ≤ m2ν and cj = |ms−1
l2ν |2

−ν/l. Therefore σm2ν ≤ σ⋆m2ν for every ν ∈ N0. Thus from

(11) and (9), we get (8). Since limν→∞ 5−2−ν
= 1, it follows that |z1| is the limit of the subsequence

(σm2ν )ν and also of (σn)n as argued above.
Since (h(n))n consists of the indices for which sh(n) ̸= 0 and since sh(n+1) = sk(h(n)) = sh(n)/qh(n)

for every n ∈ N0, the recursion formula for the powers ch(n)
n follows directly by substitution:

c
h(n+1)
n+1 = |ms−1

h(n+1)| = |ms−1
h(n)qh(n)| = ch(n)

n |qh(n)| for every n ∈ N0.

To find the indices of the successive minima, the powers in question are compared after crosswise
exponentiation.

Every root of p(z) generates a spherical point of the “analytical landscape” {(x, y, w) ∈ R3 | w =
|p(x+ iy)|2} which has no other hollows. Therefore we use the following method to obtain origin shifts
of the current polynomial to good approximations of roots close to the “minimal distance circle” with
radius r := σnε given by Theorem 6.
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If we look at the intersection of the analytical landscape and the cylinder over the circle with radius r
and with the origin as midpoint, we see that every local minimum of the function

πr :=
(
t→ |p(r cos t+ ir sin t)|2, t ∈ [0, 2π[

)
belongs to a root in a hollow which produces the minimum. Therefore we proceed by approximating
these minimum points. First we determine the coefficients

fk := rk
m−k∑
j=0

Re(aj+kaj)r2j , gk := rk
m−k∑
j=0

Im(aj+kaj)r2j , k = 1, . . . ,m,

of the Fourier expansion

πr(t) − f0 =
m∑
k=1

(
fk2 cos(kt) + gk2 cos

(
3π
2

+ kt

))
.

Then we calculate the values of

π′r(t) =
m∑
k=1

(
kgk2 cos(kt) − kfk2 cos

(
3π
2

+ kt

))
at equidistant arguments t using a table of 2 cos(πn/(3N)) with n = 0, . . . , 6N − 1, which can be
generated recursively by

2 cos((n+ 2)∆) = (2 cos∆)(2 cos((n+ 1)∆)) − 2 cos(n∆)

for n = 0, . . . , 3N − 3 with ∆ := π/(3N), or for the first half of these values if N is divisible by 4. To
enable easy doubling of this table using the same recursion and starting with 2 cos(∆/2) =

√
2 cos ∆ + 2

if necessary, we take powers of 2 for N weakly depending on the degree of p. The factor 3 is introduced
for the points ξi in Section 5.

Comparing every two successive values of π′r(n∆) for n = 0, . . . , 6N − 1, we determine the ar-
guments x1, . . . , xe with π′r(xj) ≤ 0 and π′r(xj + ∆) > 0, j ∈ {1, . . . , e}. These arguments generate
approximations r cosxj + ir cos(3π/2 + xj), j = 1, . . . , e, for the points belonging to the local minima of
πr(t). Therefore the approximations are called minimum points. Then we choose these points as “origin
shifts” for the current polynomial and calculate the diameter of the Laguerre disks for the “stopping
values” of the corresponding Bernoulli sequences. Each of the values for which the Laguerre diameter
does not exceed the desired accuracy ε is used as an approximation of a zero. If all diameters are greater
than ε, we continue in Section 5 with the value which leads to the minimal diameter.

Each minimum distance circle together with all minimum points is called minimum circle. Since
at least those roots which have caused the bad behavior of the Bernoulli sequence in the first phase are
close to the minimum circle, we diminish the stepfactor (log κ−1)−1 on the right-hand side of (2) to 2.0,
as announced on p. S44.

5. CHAINED MINIMUM CIRCLES AND MODIFIED TURÁN CIRCLES

In Theorem 6, we proved that |z1| is the limit of a sequence which can be calculated with the help of a
Bernoulli sequence (qn)n. Since we stop at a relatively small number of terms approximating the radius
of the minimum circle, we can’t be sure to find a root this way, despite the good numerical experience.
To fill this gap in Stage One of the SPA, we proceed in the following two ways.

On the minimum circle with radius r let ζ be a minimum point with minimal Laguerre diameter, as
introduced in Section 4. Then we shift the actual polynomial with ζ and calculate the radius r1 of the
minimum circle for the shifted polynomial. If r1 < 0.3 r, we proceed with the new circle as in Section 4. If
these steps are repeated until an approximation of a zero is obtained, we get chained minimum circles.

The finiteness of such a chain can be proved as follows. After n repetitions with ri < 0.3 ri−1,
i = 1, . . . , n, r0 := r, we have rn < 0.3n r. Since all minimum circles contain a zero, and since (0.3n r)n
converges to 0, there would exist an exponent e, such that all points on the e-th circle of the chain fulfill
the condition of Theorem 4. Therefore the chain consists of at most e+ 1 circles.
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If there would be two successive minimum circles with minimal Laguerre diameters and with radii
r and r1 fulfilling r1 ≥ 0.3 r, which, up to now, never occurred, then the ultimate case is based on the
following idea of Turán [10] who developed a whole method of rootfinding with it. At first, the number
of steps for the Bernoulli iterations is chosen as 16m, until the next root is approximated. With respect
to (8) instead of (11), we call a set

T (ξ) := {z ∈ C | |z − ξ| = σ16m}
modified Turán circle, if in the case ξ ̸= 0, the actual polynomial is shifted with ξ before calculating
σ16m.

The minimum circle with radius r, which we considered above, is replaced by T (0) with radius
r′ := σ16m, containing a zero z1 with

0.9 r′ < 16
√

0.2 r′ < |z1| < r′

by (8). The annulus {z ∈ C | 0.9 r′ < |z| < r′} is covered by 12 disks {z ∈ C | |z− ξj | ≤ ϑr′} with ξj :=
(19r′/20)(cos(jπ/6) + i sin(jπ/6)), j = 0, . . . , 11, and ϑ :=

√
1/400 + (19/5) sin2(π/24). Hence z1

is contained in one of these disks. If ξk is the midpoint of this disk, then T (ξk) has a radius r′1 with
0.9 r′1 < |z1| < ϑr′. Therefore we get r′1 < 10ϑr′/9 < 0.3 r′ [10, pp. 302–305].

Now the SPA is continued as in Section 4 with T (ξk) as a minimum circle. The resulting chain
may contain further modified Turán circles. But each circle has a radius smaller than 0.3 times the
preceding radius. The same conclusions as above prove that these chains are finite and therefore that
the SPA is reliable. At the same time, the following conjecture of Euler [11, § 340] is confirmed: For
each root, a substitution of the given polynomial can be determined substantially using Bernoulli
sequences, such that, with the new polynomial, a Bernoulli sequence approximates the root.

6. SEPARATION OF THE ROOTS

At the end of Stage One we obtain a list containing as triples the approximations of all roots, the
diameters of the corresponding Laguerre disks calculated for the original polynomial and the minimal
distances of these disks from the other ones. The following example, received by [9], is commented in
detail in [12].

The result at the end of Stage One for the polynomial

((z − i+ 10−11)3 − 10−10) · ((z − i− 10−13)4 + 2 · 10−13)

− ((z − i+ 2 · 10−15)4) · ((z − i+ 10−14)2 + 10−10)

is
[[0.00077353032739554464549 + 1.0006770160484033276 i,

0.00019165867790659214168, 0.00065554810623314565385],
[−0.00019885329521704972714 + 1.0010084693218859346 i,

0.59696947864402981301 10−5, 0.00082969396329870887029],
[0.00097380641505493865706 + 0.99966860219052214291 i,

0.00018090265558687391027, 0.00065554810623314565385],
[−0.00097303914697718310885 + 1.0003326680812441389 i,

0.000016647250865373317460, 0.00079995617086085220203],
[−0.00077494745909348685614 + 0.99932292694377297523 i,

0.00021238515037269297347, 0.00075618008195395334603],
[1.0000000001702279985 + 1.0000000000000000037 i,

0.69999999900544282660 10−18, 0.99884534606536475640],
[0.00019950295900923792091 + 0.99899031741417147720 i,

0.000061086512935947270899, 0.00075618008195395334603]].

PROCEEDINGS OF THE STEKLOV INSTITUTE OF MATHEMATICS Vol. 280 Suppl. 2 2013



AN EFFICIENT RELIABLE ALGORITHM S51

If every two disks are disjoint and if the diameters are less then the desired accuracy, we are ready.
Sometimes, this is not true, since by default we start with medium accuracy to get an overview. Due to
the deflation error it may also happen that we miss roots located outside the Laguerre disks while others
are associated with more than one disk.

Therefore the main goal of Stage Two is to ameliorate the approximations so that all roots will be
contained in Laguerre disks with sufficiently small diameters. Principally, these results are obtained by
stepwise increasing the precision of the basic operations and the accuracy of the approximations which
can be achieved dynamically with most computer algebra systems.

Since every Laguerre disk contains at least one root, the ameliorations are always carried out with
the SPA after an origin shift of the given polynomial to the center of the Laguerre disk. Moreover, to
avoid repeated calculation of the same root we look out for all other Laguerre disks which contain this
root. Such a root is stored with the disk data and will be deflated before the SPA is used to search for
further roots in that disk.

This process is repeated until all zeros in each Laguerre disk are determined. Since the sum of
the multiplicities of the roots contained in a disk can be calculated with the help of the Cohn–Schur
transformation (cf. [6]), we have a precise stopping condition.

If having passed all Laguerre disks we miss some roots due to the deflation error in Stage One, we
go on with deflating the given polynomial with the known roots one after the other. Then the resulting
polynomial is treated as in Stage One. The following theorem shows that by increasing the accuracy,
the deflation error can be made as small as it is necessary to locate all roots of the given polynomial in
disjoint Laguerre disks.

Theorem 7. Let f(z) be a polynomial, w be a root of f(z) with multiplicity g, η be a nonzero
complex number and

δ = δ(w, η) := min
{
t ∈ R | there is a v ∈ C with f(v) = η and |v − w| = t

}
.

If |η| is sufficiently small, then

δ ≤
(

2g! |η|
|f (g)(w)|

)1/g

. (12)

Proof. Let u ∈ C be a solution of f(u) = η with |u− w| = δ. By elementary methods it can be shown
that

f(u) − f(w) − 1
1!
f ′(w)(u− w) − · · · − 1

g!
f (g)(w)(u− w)g = q(u,w)(u− w)g+1

with an explicitly known polynomial q(u,w). Here we have

f(u) = η, f(w) = f ′(w) = · · · = f (g−1)(w) = 0, f (g)(w) ̸= 0.

If f(z) has degree m and if bm is the coefficient of zm, then Vieta’s root theorem leads to

δ = |u− w| ≤ |ηb−1
m |1/m. (13)

This can be ameliorated in the following way. There are well known upper boundsB of |w| depending on
the coefficients of f(z). Restricting |η| by an upper bound M > 0, we may take B + (M |b−1

m |)1/m as an
upper bound for |u| by (13). Therefore, for everyM > 0, a uniform upper boundK > 0 of |q(u,w)| exists
such that ∣∣∣∣η − 1

g!
f (g)(w)(u− w)g

∣∣∣∣ ≤ Kδg+1

for every η with |η| ≤M . It follows that

δg
(

1
g!
|f (g)(w)| −Kδ

)
≤ |η|. (14)
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If

|η| ≤ min
{
|f (g)(w)|m

(2g!K)m
|bm|,M

}
,

then (13) gives δ ≤ |f (g)(w)|/(2g!K). Now, from (14) we obtain

δg
|f (g)(w)|

2g!
≤ |η|

which is equivalent with (12).

The SPA uses η in the following way. If w0 is another zero of f(z) and if w∗
0 is an approximation of w0

determined with the stopping condition

m

∣∣∣∣ f(w∗
0)

f ′(w∗
0)

∣∣∣∣ ≤ ε, (15)

where ε is the desired upper bound of |w0 − w∗
0|, then deflation with w∗

0 leads to a polynomial f∗1 (z)
satisfying

f(z) = (z − w∗
0)f

∗
1 (z) + f(w∗

0).

With η := f(w∗
0) Theorem 7 gives an upper bound for the deflation error |u−w| = δ, where u is the zero

of f(z) − η = (z − w∗
0)f

∗
1 (z) corresponding to w.

By (15) we have |η| ≤ |f ′(w∗
0)|(ε/m). Therefore, by repeated application of Theorem 7, the total

deflation error δd(ε) after d deflations fulfills

|δd(ε)| ≤
d∑
i=1

ciε
1/gi (16)

with nonnegative constants ci only depending on f and with multiplicities gi which are defined
successively by Theorem 7 for the sequence of roots in the order of the corresponding deflations.

Now, let w be any zero of p, w∗ be the corresponding zero of a deflation polynomial after d deflations
and u be an approximation of w∗. By stepwise decreasing ε, the inequality

max{ε, |δd(ε)|} ≤ 1
4m

µ (17)

can be satisfied which leads to |u−w∗| ≤ µ/(4m) by (15) and to |w−w∗| ≤ µ/(4m) by (16). Therefore
we get |u− w| ≤ µ/(2m) and Theorem 4 gives Lu ∩ Z = {w}.

As mentioned above this enables us to determine disjoint Laguerre disks which contain all roots.
If w has multiplicity g > 1, then there may be g different approximations of w which generate up to g
Laguerre disks. All these disks contain w but no other roots. Moreover, w is an interior point of the
intersection. Therefore, the approximations of w can be ameliorated locally so that they finally lie in only
one of the disks.

The practical use of condition (17) raises two problems. The deflation error δd(ε) is not known
explicitly and the minimal distance µ of the roots can only be approximated in a complicated manner.
In [1] a simple lower bound µ′ of µ is given. But, up to now, this result can’t be used efficiently because
the method is either very time-consuming or extremely sensitive to roundoff errors. Moreover, the
approximation of all roots in Stages One and Two often runs more than twice as fast as the calculation
of the rational number (µ′)2 even using integer arithmetic. Therefore, we never estimate the minimal
distance µ of the roots in advance. Instead of that, the precision of the operations and the accuracy of
the results are ameliorated stepwise with ε = 10−[2+logm]j , j = 1, . . . , J , where the stopping number J
is defined through successful separation of the roots which is guaranteed by the above considerations.

From (16) and (17) with

γ := max
{
g ∈ N1 | there is an i ∈ Jd with g = gi

}
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we get J = O(γ log(1/µ)), where γ does not really depend on m because the multiplicities gi are
determined by successive deflation polynomials. Since we use quotients of power sums, shifts and
deflations as in Stage One, the worst case complexity in Stage Two is O(m4 log(1/µ)). Moreover, it
should be mentioned that two shifts are as costly as m deflations with decreasing degree.

7. NEWTON–RAPHSON ITERATION

This optional Stage Three provides a simple iterative method to ameliorate the approximations. In
the case of roots with multiplicity 1 the convergence is at least quadratic. If a Laguerre disk L contains
only one root zj with any multiplicitymj and if L has no common elements with the other Laguerre disks
determined in Stage Two, then the minimal distance between L and the other Laguerre disks is a lower
bound for µj in the following theorem.

Theorem 8. Let p(z) be a polynomial as specified above with k ≥ 2. If zj ∈ Z , then

|hmj (u) − zj | ≤
m−mj

2mmj −m
|u− zj | (18)

holds for every u ∈ C with 0 < |u− zj | ≤ µj/(2m).
The sequence (un)n with u0 := u and un+1 := hmj (un) for n ∈ N0 converges to zj . The error can

be estimated a posteriori by

|un+1 − zj | ≤
m−mj

2m(mj − 1) +mj
|un − un+1| for every n ∈ N0. (19)

If mj = 1, the convergence is at least quadratic which means that there exists a constant
K1 > 0 such that

|un+1 − zj | ≤ K1 |un − zj |2 for every n ∈ N0. (20)

Proof. Similar to the proof of Theorem 4 we get

|hmj (u) − zj | =
∣∣∣∣1 − mj

mj + Sj

∣∣∣∣|u− zj | ≤
|Sj |

mj − |Sj |
|u− zj | ≤

m−mj

2mmj −m
|u− zj | =: q|u− zj |.

With

q =
1

2mj − 1

(
1 − mj

m

)
< 1

mathematical induction leads to

|un − zj | ≤ |u0 − zj |qn ≤ 1
2m

µjq
n for all n ∈ N0

which means that zj is the limit of (un)n.
From (18), we have

|un+1 − zj | ≤ q|un − zj | ≤ q|un − un+1| + q|un+1 − zj |
and therefore

|un+1 − zj | ≤
q

1 − q
|un − un+1|

which is equivalent with (19).
Since p′(u) ̸= 0 for every u ∈ C with |u− zj | ≤ µj/(2m), the function h1(u) is infinitely often

differentiable at zj . Therefore a constant K1 > 0 exists such that

|h1(u) − h1(zj) − h′1(zj)(u− zj)| ≤ K1(u− zj)2.

With h1(zj) = zj and h′1(zj) = 0, it follows that

|h1(u) − zj | ≤ K1|u− zj |2.
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8. CONCLUSION

The following results concerning Bernoulli sequences, Laguerre disks, minimum circles, and modi-
fied Turán circles are obtained in this paper.

1. A lower bound for the number of steps of a Bernoulli sequence to approximate a zero with smallest
modulus is derived for prescribed accuracy.

2. A recursion formula for the Bernoulli sequences and properties of the Laguerre disks needed for
stopping criteria and error estimates are proved as in [1].

3. Chained minimum circles are combined with modified Turán circles to guarantee the reliability of
the SPA. Since the radii of all circles are calculated with the help of Bernoulli sequences, at the same
time a conjecture of Euler [11] is confirmed, concerning the determination of substitutions for the given
polynomial to approximate all zeros, substantially using Bernoulli sequences.
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9. H. Möller, SPAview.mws, Maple worksheet; http://www.math.uni-muenster.de/u/mollerh.

10. P. Turán, On a New Method of Analysis and Its Applications (Wiley, New York, 1978).
11. L. Euler, Introduction to Analysis of the Infinite (Bousquet, Lausanne, 1748; Springer-Verlag, New York,

1988), Book 1.
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