# Singular

#### D.15.25.38 equalMultiDeg

Procedure from library `multigrading.lib` (see multigrading_lib).

Usage:
equalMultiDeg(exp1, exp2[, V]); intvec exp1, exp2, intmat V

Purpose:
Tests if the exponent vectors of two monomials (given by exp1 and exp2) represent the same multidegree.

Note:
the integer matrix V encodes multidegrees of module components, if module component is present in exp1 and exp2

Example:
 ```LIB "multigrading.lib"; printlevel=3; ring r = 0,(x,y,z),dp; intmat g[2][3]= 1,0,1, 0,1,1; intmat t[2][1]= -2, 1; setBaseMultigrading(g,t); poly a = x10yz; poly b = x8y2z; poly c = x4z2; poly d = y5; poly e = x2y2; poly f = z2; equalMultiDeg(leadexp(a), leadexp(b)); ==> 1 equalMultiDeg(leadexp(a), leadexp(c)); ==> 0 equalMultiDeg(leadexp(a), leadexp(d)); ==> 0 equalMultiDeg(leadexp(a), leadexp(e)); ==> 0 equalMultiDeg(leadexp(a), leadexp(f)); ==> 0 equalMultiDeg(leadexp(b), leadexp(c)); ==> 0 equalMultiDeg(leadexp(b), leadexp(d)); ==> 0 equalMultiDeg(leadexp(b), leadexp(e)); ==> 0 equalMultiDeg(leadexp(b), leadexp(f)); ==> 0 equalMultiDeg(leadexp(c), leadexp(d)); ==> 1 equalMultiDeg(leadexp(c), leadexp(e)); ==> 0 equalMultiDeg(leadexp(c), leadexp(f)); ==> 0 equalMultiDeg(leadexp(d), leadexp(e)); ==> 0 equalMultiDeg(leadexp(d), leadexp(f)); ==> 0 equalMultiDeg(leadexp(e), leadexp(f)); ==> 1 ```