# Singular          ### A.4.9 Resolution of singularities

Resolution of singularities and applications thereof are provided by the libraries `resolve.lib` and `reszeta.lib`; graphical output may be generated automatically by using external programs `surf` and `dot` respectively to which a specialized interface is provided by the library `resgraph.lib`. In this example, the basic functionality of the resolution of singularities package is illustrated by the computation of the intersection matrix and genera of the exceptional curves on a surface obtained from resolving the A6 surface singularity. A separate tutorial, which introduces the complete functionality of the package and explains the rather complicated data structures appearing in intermediate results, can be found at `http://www.singular.uni-kl.de/tutor_resol.ps`.

 ```LIB"resolve.lib"; // load the resolution algorithm LIB"reszeta.lib"; // load its application algorithms ring R=0,(x,y,z),dp; // define the ring Q[x,y,z] ideal I=x7+y2-z2; // an A6 surface singularity list L=resolve(I); // compute the resolution list iD=intersectionDiv(L); // compute intersection properties iD; // show the output ==> : ==> -2,0,1,0,0,0, ==> 0,-2,0,1,0,0, ==> 1,0,-2,0,1,0, ==> 0,1,0,-2,0,1, ==> 0,0,1,0,-2,1, ==> 0,0,0,1,1,-2 ==> : ==> 0,0,0,0,0,0 ==> : ==> : ==> : ==> 2,1,1 ==> : ==> 4,1,1 ==> : ==> : ==> 2,1,2 ==> : ==> 4,1,2 ==> : ==> : ==> 4,2,1 ==> : ==> 6,2,1 ==> : ==> : ==> 4,2,2 ==> : ==> 6,2,2 ==> : ==> : ==> 6,3,1 ==> : ==> 7,3,1 ==> : ==> : ==> 6,3,2 ==> : ==> 7,3,2 ==> : ==> 1,1,1,1,1,1 // The output is a list whose first entry contains the intersection matrix // of the exceptional divisors. The second entry is the list of genera // of these divisors. The third and fourth entry contain the information // how to find the corresponding divisors in the respective charts. ```

### Misc 