
Introduction the the Singular sources

Hans Schönemann

October 22, 2014

Preface

This paper should introduce some concept and conventions of Singular which
are not connected to a specific routine/type.o

For details, consult the sources or the reference manual about that specific
routine.

Ich wünschte sehr der Menge zu behagen,
Besonders weil sie lebt und leben läßt.
Die Pfosten sind, die Bretter aufgeschlagen,
Und jedermann erwartet sich ein Fest.
Sie sitzen schon mit hohen Augenbraunen
Gelassen da und möchten gern erstaunen.
Ich weiß, wie man den Geist des Volks versöhnt;
Doch so verlegen bin ich nie gewesen:
Zwar sind sie an das Beste nicht gewöhnt,
Allein sie haben schrecklich viel gelesen.
Wie machen wir’s, daß alles frisch und neu
Und mit Bedeutung auch gefällig sei?
Denn freilich mag ich gern die Menge sehen,
Wenn sich der Strom nach unsrer Bude drängt,
Und mit gewaltig wiederholten Wehen
Sich durch die enge Gnadenpforte zwängt;
Bei hellem Tage, schon vor vieren,
Mit Stößen sich bis an die Kasse ficht
Und, wie in Hungersnot um Brot an Bäckertüren,
Um ein Billet sich fast die Hälse bricht.
(Goethe, Faust, Vorspiel auf dem Theater)

1

Chapter 1

Naming Conventions

1.1 Functions

The general rule for function names (and other global visible names) is the
structure <prefix><Name>. The main part (and each new word within) starts
with a capital letter. A list of some common prefixes:

algebra related types
Singular C/C++ function prefix
int int -
string char * -
intvec intvec * iv
intmat intvec * iv
number number n, np, nl, na
poly poly p
vector poly p
ideal ideal id
module ideal id
matrix matrix, sometimes also ideal mp
intvec intvec iv
intmat intvec iv
resolution resolution -
list lists l
ring ring r

interpreter related types
package package

expression, expression list leftv

interpreter related prefix
ii ji, jj

1.2 Macros

Macros which are used to avoid multiple inclusion by cpp should be derived from
the file name and completely in capital letters. The same applies to macros for
constant values.

Macros which are used as functions should follow the convention for function

2

names above.

1.3 File names

Names for files are restricted by the usual file systems restrictions: they must
be unique even if all capital letters are converted to small letters.

1.4 Local Variables

Usually i,j,k,l,m,n are int counter, f,g,p are often used for polynomials.
Within the interpreter, u,v,w are the arguments, res the result, h is usually a
pointer for an interpreter variable.

3

Chapter 2

Types and constants

2.1 Standard Types

• ADDRESS void*

• BOOLEAN a small integer type which at most place contains FALSE, TRUE

and sometimes some more. For speed/space reasons it is int on 64bit
machines and short otherwise.
(sizeof(char)<=sizeof(BOOLEAN)<=sizeof(int))

2.2 Standard Constants

C++ does not distinguish these values, but Singular does (depending on the
intended type):

• 0 for short/int

• 0L for long

• ’\0’ for char

• NULL for pointer

4

Chapter 3

I/O

3.1 Input

stdin is exclusively used by the scanner. Other input must use the methods of
si_link. (see Inout::pause).

3.2 Output

Beside si_link output to stdout is provided by Print (analogue to printf)),
PrintS(char *), warning should be printed by Warn/WarnS, errors by Werror/WerrorS.

Other data type have their own output routines which are bases (exclusively)
on Print/PrintS.

3.3 String based output

Many output routines are also used for conversion to string:

• start a new buffer with StringSetS(char *)

• (optional) append stuff with StringAppendS

• destroy the buffer and return its contents (an omalloc allocated block)
with StringEndS.

The nesting level of StringSetS/ StringEndS is limited to 8.

3.4 Output routines

All output routines for certain types have Write in them: n_Write (for number,
to the buffer), p_write (for poly), iiWriteMatrix (for ideal/matrix/map/module).
rWrite (for ring), etc.

5

Chapter 4

Memory management

Singular uses omalloc as memory manager, which is optimized for many small
blocks of similar sizes (very low overhead). Another difference to malloc is the
alignment: address are aligned to the size of a pointer, not the largest simple
type. For such requirements use omAllocAligned. The content of the newly
allocated block is undefined unless omAlloc0 (or similar) is used: the content
of these blocks is set to 0.

• omalloc: analogue to malloc

• omAlloc(s): Singular’s optimized version: requires s! = 0.

• omfree: analogue to free

• omFree(p): Singular’s optimized version: requires p! = NULL.

• omFreeSize: checks the size in the debug version, otherwise equivalent to
omFree

• omAllocBin(b): uses a special free list created by omGetSpecBin

• omFreeBin(p,b): uses a special free list created by omGetSpecBin, but
blocks allocated by omAllocBin may also be freed by omFree/omFreeSize

• new/delete: standard C++ memory operators are overloaded, must be
used in pairs, cannot be mixed neither with omalloc nor new[]/delete[]

• new[]/delete[]: standard C++ memory operators are overloaded, must
be used in pairs, cannot be mixed neither with omalloc nor new/delete

6

Chapter 5

Numbers

The structure pointed to by ”coeffs” describes a commutative ring with 1 which
could be used as coefficients for polynomials.

To create a new instance of coeffs, implement all of the mandatory proper-
ties/functions (and, depending of the properties, the needed optional ones) and
register it via nRegister(n_unknown,<InitCharFunc>). coeff stores now the
description of this ring and all the operations, its members are of type number

(they should be considered as hidden pointers).
The general convention for these functions for numbers is that they create

new (number-) objects (keeping the arguments) - with the exception of the
cfInp... routines which modify their first argument.

All public routines are prefixed by n_ and require the ring description (of
type coeff) as last argument.

7

Chapter 6

Polynomials

6.1 poly and ring

Polynomials form a polynomial ring, commutative or non-commutative, together
with a monomial ordering (global, local or mixed). The coefficients (number)
commute with all polynomial variables.

The description of the ring is stored by objects of type ring, their objects
are of type poly.

poly represents polynomials as simple linked list of monomials, ordered by
the corresponding monomial ordering. NULL represents the polynomial 0. Each
monomial consists of a coefficient (of type number, a next pointer and the rep-
resentation of the exponent vector. Its encoding depends on the monomial order-
ing: only p_GetExp/p_GetExpV can retrieve the exponents, only p_SetExp/p_SetExpV

can set them. After a call resp. several call to p_SetExp one needs to call
p_Setm.

The general convention for polynomial functions is that they create new
(poly-) objects by absorbing the arguments (consider them afterward as
undefined) thus deleting their input.

Exceptions are the copying routines p_Copy, p_Head

Most public routines are prefixed by p_ and require the ring description as
last argument (of type ring). Some routines do not required a ring, they are
prefixed by p (pGetCoeff,pNext,pIter,..) For historical reasons most routines
have also a version with the prefix p: they use currRing as description of the
ring.

6.2 Buckets

An alternative polynomial representation is given by kBucket7sBucket. Use
kBucket if access to the leading term is needed (for example during standard
basis computations), otherwise sBucket is better suited (for example in sorting
polynomials, conversion routines and multiplication).

8

6.3 CanonicalForm

Another alternative polynomial representation is given by factory’s CanonicalForm,
which represents polynomials in a recursive way, which is well suited for multi-
plication/division and gcd/factorization routines.

9

Chapter 7

Interfacing the interpreter

7.1 leftv

The Singular interpreter is stack based, generated by bison. The stack elements
are from an array of sleftv, therefore leftv (pointer to sleftv) is the standard
type to pass to all the routines. It also explains that the ”destructor” CleanUp

does not free the memory block. The main parts of sleftv are the type id and
a data pointer:

• Typ() the type of the expression (after evaluation): may be the value of
rtyp (in the case of a constant) or the type of a variable (then rtyp is
IDHDL) or the type of an index entry in a list/ideal/etc. (then e ist not
NULL)

• rtyp (see Typ())

• Data() a read-only pointer to the data of the expression. Has to be casted
according to the result of Typ

• data (see Data())

• CopyD() a copy of the data, may only be called once, is more efficient than
copy(Data())

7.2 Kernel commands

Kernel commands are scheduled by 4 tables (for 1, 2, 3 or ”many” arguments).
Which one is used depends on the type of the operation (CMD_1, CMD_12,..,CMD_M)
and the current number of arguments: for example an operation of type CMD_12

and 2 arguments would use dArith2, while an operation of type CMD_M and 2
arguments uses table dArithM. The entries for certain operations have to be
grouped together, the order within such a block is determined by the order of
type conversions: the interpreter tries first to find an exact match for the ar-
gument types, after that the first entry where all arguments may be converted
is used. For example, for + the entry with (matrix,matrix) has to come after
(poly,poly): other wise the result of x+1 would be a matrix and not a poly.

The order of the block is not so important, but an alpabetical order makes
them easier to find.

10

7.3 Procedure calls

Add C/C++ functions via iiAddCproc("<component>","<name>",<static ?>,<C+
routine to call¿);+ to the current name space. Here component stands for the
module name (in the file system), used for displaying information, name is the
name of the function for the interpeter, static is 0 or 1.

An alternative may be the procedure from Singular/HOWTO.addKernelCmds,
but adding new kernel commands as reserved names should be used only rarely
(because of name conflicts, growing table sizes, etc.).

Calling functions (which are not kernel commands) is done via
iiMake_proc(idhdl pn, package pack, sleftv* sl)

where pn stands for the function, pack the current package and sl (which may
be NULL) the list of the arguments.

7.4 Error handling

All interpreter routines return an error code (FALSE for success, TRUE for
error). Additional an explaination should be given via Werror/WerrorS. This
sets errorreported,inerror which the interpreter resets to 0 during error
handling. External callers to the Singular interpreter routines have do this
themselves.

11

Chapter 8

Where to find files

8.1 Paths via environment variables and relative
to the binary

Singular has 3 mechanism to find its files during run-time:

1. by environment variables

2. relative to the location of the main binary

3. fixed path at configure time

The most important are:
environment var use configured place
SINGULARPATH dirs for libraries prefix/share/singular/LIB/

SINGULAR_PROCS_DIR dirs for modules prefix/lib/singular/MOD/

prefix/libexec/singular/MOD

SINGULAR_INFO_FILE singular.hlp prefix/info/singular.hlp

SINGULAR_IDX_FILE singular.idx prefix/doc/singular.idx

SINGULAR_HTML_DIR dir for html files prefix/singular/html/

SINGULAR_URL url of the manual http://www.singular.uni-kl.de/

Manual/

SINGULAR_EMACS_DIR ESingular files prefix/emacs/

For the configured place prefix is set by configure (usually /usr/local or
/usr), for the run-time location prefix is %b/.. where %b is the directory of
the main Singular binary (after following symbolic links).

For files, the first possibility is chosen, for paths, all existent directories are
considered: system("with"); or Singular -v tells the current settings.

8.2 More files

.singularrc is searched in the current directory, in the home directory and in
the directories of the singular path. If more than one exists, only the first is
used.

gftables/* is searched in the directories of the singular path and defaults
to prefix/share/factory/gftables/...

12

Chapter 9

More environment variables

9.1 SINGULARHIST

If Singular is compiled with readline, and if the environment variable SINGULARHIST
is set and has a name of a valid file as value, then the input history is stored
across sessions using this file. Otherwise, i.e., if it is not set, then the history of
the last inputs is only available for previous commands of the current session.

9.2 PATH

For calls to external programs, PATH is extended by the directory of the main
Singular binary and the directories for modules (see previous chapter)

9.3 HOME

tilde in file names is replaced by the contents of HOME. If HOME is not set or
unusable, SINGHOME is used (on windos).

13

Contents

1 Naming Conventions 2
1.1 Functions . 2
1.2 Macros . 2
1.3 File names . 3
1.4 Local Variables . 3

2 Types and constants 4
2.1 Standard Types . 4
2.2 Standard Constants . 4

3 I/O 5
3.1 Input . 5
3.2 Output . 5
3.3 String based output . 5
3.4 Output routines . 5

4 Memory management 6

5 Numbers 7

6 Polynomials 8
6.1 poly and ring . 8
6.2 Buckets . 8
6.3 CanonicalForm . 9

7 Interfacing the interpreter 10
7.1 leftv . 10
7.2 Kernel commands . 10
7.3 Procedure calls . 11
7.4 Error handling . 11

8 Where to find files 12
8.1 Paths via environment variables and relative to the binary 12
8.2 More files . 12

9 More environment variables 13
9.1 SINGULARHIST . 13
9.2 PATH . 13
9.3 HOME . 13

14

