|
D.5.4.3 vfiltjacalg
Procedure from library gaussman.lib (see gaussman_lib).
- Usage:
- vfiltjacalg(vfiltration(f)); poly f
- Assume:
- basering has local ordering, f has isolated singularity at 0
- Return:
| list l:
ideal l[1]: spectral numbers of the V-filtration
on the Jacobian algebra in increasing order
intvec l[2]:
int l[2][i]: multiplicity of spectral number l[1][i]
list l[3]:
module l[3][i]: vector space basis of the l[1][i]-th graded part
of the V-filtration on the Jacobian algebra
in terms of l[4]
ideal l[4]: monomial vector space basis of the Jacobian algebra
ideal l[5]: standard basis of the Jacobian ideal
|
Example:
| LIB "gaussman.lib";
ring R=0,(x,y),ds;
poly f=x5+x2y2+y5;
vfiltjacalg(vfiltration(f));
==> [1]:
==> _[1]=0
==> _[2]=1/5
==> _[3]=2/5
==> _[4]=1/2
==> _[5]=3/5
==> _[6]=4/5
==> _[7]=1
==> [2]:
==> 1,2,2,1,2,2,1
==> [3]:
==> [1]:
==> _[1]=gen(11)
==> [2]:
==> _[1]=gen(10)
==> _[2]=gen(6)
==> [3]:
==> _[1]=gen(9)
==> _[2]=gen(4)
==> [4]:
==> _[1]=gen(5)
==> [5]:
==> _[1]=gen(8)
==> _[2]=gen(3)
==> [6]:
==> _[1]=gen(7)
==> _[2]=gen(2)
==> [7]:
==> _[1]=gen(1)
==> [4]:
==> _[1]=y5
==> _[2]=y4
==> _[3]=y3
==> _[4]=y2
==> _[5]=xy
==> _[6]=y
==> _[7]=x4
==> _[8]=x3
==> _[9]=x2
==> _[10]=x
==> _[11]=1
|
|