Top
Back: Schoof
Forward: factorLenstraECM
FastBack: atkins_lib
FastForward: hyperel_lib
Up: crypto_lib
Top: Singular Manual
Contents: Table of Contents
Index: Index
About: About this document

D.11.3.33 generateG

Procedure from library crypto.lib (see crypto_lib).

Usage:
generateG(a,b,m);

Return:
m-th division polynomial

Note:
generate the recursively defined polynomials in Z[x,y],so called division polynomials, p_m=generateG(a,b,m) such that on the elliptic curve defined by y^2=x^3+a*x+b over Z/N and a point P=(x:y:1) the point m*P is (x-(p_(m-1)*p_(m+1))/p_m^2 :(p_(m+2)*p_(m-1)^2-p_(m-2)*p_(m+1)^2)/4y*p_m^3 :1) m*P=0 iff p_m(P)=0

Example:
 
LIB "crypto.lib";
ring R = 0,(x,y),dp;
generateG(7,15,4);
==> 4xy6+140xy4+1200xy3-980xy2-1680xy-8572x


Top Back: Schoof Forward: factorLenstraECM FastBack: atkins_lib FastForward: hyperel_lib Up: crypto_lib Top: Singular Manual Contents: Table of Contents Index: Index About: About this document
            User manual for Singular version 3-0-3, May 2007, generated by texi2html.