Procedures:
D.2.5.1 cyclic ideal of cyclic n-roots D.2.5.2 katsura katsura [i] ideal D.2.5.3 freerank rank of coker(input) if coker is free else -1 D.2.5.4 is_zero int, =1 resp. =0 if coker(input) is 0 resp. not D.2.5.5 lcm lcm of given generators of ideal D.2.5.6 maxcoef maximal length of coefficient occurring in poly/... D.2.5.7 maxdeg int/intmat = degree/s of terms of maximal order D.2.5.8 maxdeg1 int = [weighted] maximal degree of input D.2.5.9 mindeg int/intmat = degree/s of terms of minimal order D.2.5.10 mindeg1 int = [weighted] minimal degree of input D.2.5.11 normalize normalize poly/... such that leading coefficient is 1 D.2.5.12 rad_con check radical containment of polynomial p in ideal I D.2.5.13 content content of polynomial/vector f D.2.5.14 numerator numerator of number n D.2.5.15 denominator denominator of number n D.2.5.16 mod2id conversion of a module M to an ideal D.2.5.17 id2mod conversion inverse to mod2id D.2.5.18 substitute substitute in I variables by polynomials D.2.5.19 subrInterred interred w.r.t. a subset of variables D.2.5.20 newtonDiag Newton diagram of a polynomial D.2.5.21 hilbPoly Hilbert polynomial of basering/I