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Introduction

In Real Algebraic Geometry the notion of real radicals is a fundamental tool.It takes
the role of the radical ideal in complex Algebraic Geometry. In this work an algorithm
to compute the real radical for polynomials ideals I is presented.

Similar to the radical of an ideal J � K[x1, . . . , xn], which describes the variety of J
over the algebraic closure K, there exists the notion of the real radical re

√
J . It cor-

responds to the real points Vre(J) (see definition B.13) of an ideal J in Q[x1, . . . , xn]
or a transcendent extension Q(y1, y2, . . . , ym)[x1, . . . , xn]. Analogous to Hilbert’s Null-
stellensatz the following property holds:
Let K be a formally real field and J � K[x1, . . . , xn] be any ideal. Then

IK(Vre(J)) =
re
√

J.

The real radical an of ideal over J � A := Q(y1, y2, . . . , ym)[x] is defined as follows:

re
√

J := 〈f ∈ A : ∃r, m ∈ N : f 2r +
m∑

i=1

kig
2
i ∈ J, ki ∈ K≥0, gi ∈ A〉

The aim of this work is to explicitly state and implement an algorithm to compute the
real radical of an arbitrary polynomial ideal J �A, where m ≥ 0. To this end, we also
need to recall some basics of Real Algebra and Real Algebraic Geometry. The original
task arose from an article by Becker and Neuhaus written in 1998 (see [BN98]), where
they present an idea to compute the real radical of a polynomial ideal. In Chapter 4,
some gaps in the original article have been filled to speed up the computation:

The idea is to study the properties of maximal ideals M and to find a heuristic for
the case when they are real, i.e. when re

√
M = M . This idea arose from the fact that

the primary decomposition in Singular is well implemented and very efficient in the
average case.

The abstract is structured in two major parts. The first part consists the five main
chapters and the second refers to the two appendix chapters.

The appendix chapters present some basics of Real Algebra and Real Algebraic Geom-
etry which are needed to obtain the theorems and methods for the higher dimensional
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Introduction

radical computations over Q(y1, y2, . . . , ym). In Appendix Chapter A a generalization
of the properties of subfields of R and orderings is introduced:
As we know every subfield of R admits the unique ordering ≥ of R we need to study
a generalization for these orderings. Here a field will be called real if we can order it.
Therefore we define pre-orderings σ of a field K to be a substructure satisfying the
following conditions:

1. σ + σ ⊂ σ and σ · σ ⊂ σ

2. −1 6∈ σ

3. K2 ⊂ σ, i.e. a2 ∈ σ for all a ∈ K

A pre-ordering τ additionally satisfying the property τ ∪ (−τ) = K is called an or-
dering. The field (K, σ) (resp. (K, τ)) is called a pre-ordered (ordered) field. From
the convention α ≥ 0 iff α ∈ σ (resp. α ∈ τ) follows that every pre-ordering σ
is a partial ordering of the field K which is compatible with the field axioms and
we obtain that any ordering τ is a total ordering. Obviously every pre-ordering is
contained in the smallest pre-ordering re :=

∑
K2 which is the sum of all squares

in K. Every pre-ordering σ is the intersection of several orderings τ1, τ2, . . . , τr and
thus every pre-ordered field can be ordered. In perticular every field F , in which
re := {a2

1 + . . . a2
r : r ∈ N, ai ∈ F} is a pre-ordering (i.e. −1 6∈ re) is real. Thus real

fields as generalization of subfields of R, are fields which admit an ordering τ . Hence
a field F is real iff −1 is no sum of squares.

The notion of real closed fields and a real closure are defined as a generalization
of R in which the fundamental theorem of algebra holds. Here a field R is called real
closed if it is real, R2 is its unique ordering and it fulfills the fundamental theorem of
algebra in one variable. As for the real numbers, the algebraic closure of a real closed
field R is R(

√
−1). We will see that every ordered field F has a real closure R which

is unique up to isomorphism.

The chapter finishes with the Tarski-Seidenberg principle for real closed fields: Let
R and R′ be two real closed fields satisfying R ⊂ R′ and let Φ(Y ) be any statement
over R using >,<, =,≥,≤, sign. Then Φ(Y ) is true over R iff it is true over R′.
This theorem is mainly used in Chapter 3. Here we obtain that a polynomial f ∈
Q[x1, . . . , xn] is non-negative over Ralg := Q ∩ R (which is the real closure of Q) iff
it is non-negative over R. Indeed every assertion of being real which should be done
over Ralg can be done over R by means of this principle.

In the second appendix chapter we see that the notion of the real radical is only a
specialization of the stronger notion of σ-radicals for arbitrary pre-orderings σ of real
fields K.
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Let (K, τ) be a pre-ordered field, A a K-algebra and I � A an arbitrary ideal. Then
the τ -radical of I is

τ
√

I = {f ∈ A : f 2r +
m∑

i=1

aig
2
i ∈ I with r, m ∈ N, gi ∈ A and ai ∈ τ ∀i}.

For any ideal I � K[x1, . . . , xn] we the define the σ-real points of I to be the union
of the real points of every real closure Rα of K where α is an ordering extending σ.
Hence Vσ(I) :=

⋃
α⊃σ VRα(I) where VRα(I) := {x ∈ Rn

α : f(x) = 0∀f ∈ I}.

The most important theorems in this chapter are the Real Nullstellensatz, proved by
Krivine which says that IF (Vσ(I)) = σ

√
I and in particular IK(Vre(I)) = re

√
I and the

sign change criterion of Dubois (B.10). With the aid of this criterion we get the
Remark B.11 which is again important for Chapter 3. In this chapter some properties
of the σ

√-functor and σ-real prime ideals are introduced. Both appendix chapters are
fundamental for understanding Chapters 3-5.

The main chapters describe the algorithm in detail. The algorithm for the higher
dimensional case for an ideal I �Q(y1, y2, . . . , ym)[x1, . . . , xn] is implemented by two
reductions. The first is a reduction to the zero-dimensional case via the computation
of zero-dimensional ideals J (S). These ideals are contained in the ideal of the real
isolated points of I · (Q(y1, y2, . . . , ym))(S)[{x1, . . . , xn}\S] where S ⊂ {x1, . . . , xn}.

The heart of the whole Diplomarbeit are Chapter 2 and 3. Here the special case of
univariate polynomials is explained. Every real radical computation mainly reduces
to this special case.

Chapter 1 gives a short overview and motivation to the notion of the real radicals.
Some examples are given of how the re

√ functor can behave. We will see first proper-
ties on Q-algebras A. The real radical commutes with intersection and localization.
For an arbitrary ideal I � A, we know re

√
I =

re
√

re
√

I, and re
√

I is a radical ideal by
definition. A special form of the Real Nullstellensatz over Q is stated. The general
form was proved in the appendix chapters.
One of the fundamental statements is Proposition 1.8 which tells us that the real rad-
ical of I is the intersection of all real prime ideals P containing I. In fact, to give rise
to all real points, the real radical of I is the intersection of all real maximal ideals M
containing I.
The chapter finishes by sketching how the one-to-one correspondences from Algebraic
Geometry over algebraically closed fields are translated to Real Algebraic geometry by
means of the real radical. Thus a real maximal ideal corresponds to a zero-dimensional
real zero-set which can be seen as finitely many conjugate points in the field extension
of Q to Ralg (or R by the Tarski Seidenberg principle).
Prime ideals correspond to irreducible Q-varieties in Rn and the primary decompo-
sition is just the decomposition of a Q-variety Vre(I) ⊂ Rn in its irreducible compo-
nents.
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Introduction

The univariate case of polynomials f ∈ Q(y1, y2, . . . , ym)[x] which corresponds to the
leaves of the reduction tree, is explained in Chapters 2 and 3.

The main idea is the following: Let

f = ε · pα1
1 · pα2

2 · · · pαr
r .

If we could decide whether a prime polynomial pi is real or not, then the real radical
of the principal ideal 〈f〉�Q(y1, y2, . . . , ym)[x] is

re
√
〈f〉 = 〈

∏
pi is real

pi〉.

This provides an idea how to compute the real radical of a univariate polynomial.
Chapter 2 does this in the special case m = 0. A classical solution to the problem
is due Sturm using Sturm sequences. Other methods to count real roots are e.g.
the Silvester-Habicht sequence. As Chapter 2 is only the special case preparing the
more the general case in Chapter 3, I decided to explain only the main ideas of the
Sturm sequence which is defined nearly like the remainders in the Euclidean algorithm
but with a sign change. Sturm’s theorem counts all distinct roots without counting
their multiplicity, but as irreducible polynomials in Q[x] are square-free all roots are
distinct. Additionally, we are only interested in the existence of these zeroes.

Among all statements in Chapter 3 there is Lemma 3.1. It says if p ∈ Q[y1, y2, . . . , ym, x]
is an irreducible polynomial such that degx p > 0, then p := p · Q(y1, y2, . . . , ym)[x]
(which is obviously prime) is real iff p is indefinite over R, i.e. there exist a, b ∈ Rm+1

such that p(a) ·p(b) < 0. Hence we need to decide if the irreducible polynomial p has a
sign change. The solution to this problem is obtained from an article of Zeng & Zeng
(see [GX04]). The main idea of the algorithm is described in the following theorem.

Theorem (Zeng & Zeng)
Let f be a polynomial in Q[x1, . . . , xn] with n ≥ 2. Then a non-zero univariate poly-
nomial p ∈ Q[xn] can be computed effectively such that for every isolating set Γ of p,
f(x1, . . . , xn) ≥ 0 in Rn iff f(x1, . . . , xn−1, a) ≥ 0 for every a ∈ Γ.

Hence the idea of our algorithm is to compute a new polynomial p ∈ Q[xn] and on of
its isolating sets. Then we check if Zeng&Zeng’s holds. If not we conclude that f is
indefinite. An isolating set Γ of a polynomial g ∈ Q[x] is a finite subset {a1, . . . , am}
satisfying g(ai) 6= 0 for every i. The intervals (ai, ai+1) contain at most one zero of g
and every zero α of g is contained in an interval (al, al+1). This means that the roots
are partitioned by the ai. The idea to compute such an isolating set is introduced in the
first subsection of Chapter 3. It uses Bernstein polynomials and Bernstein coefficients.
As a reference I used the book of S.Basu, R.Pollack and M.-F.Roy (see [BPR03] Chap-
ter 10). The advantage of Bernstein coefficient instead of Sturm sequences is that, if
we shorten our interval (a, b), in which we want to know if the polynomial g has exactly
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one root, it costs only additions and multiplications. The Sturm sequences always use
the evaluation of points in the whole sequence. Thus using Bernstein polynomials,
which give a a more efficient data structure, is a better choice for implementing fast
isolating set computations. The whole idea of the algorithm to compute such an iso-
lating set is given in the first subsection of Chapter 3. The second subsection shortly
states the algorithm to decide whether a multivariate polynomial is indefinite or not.
For this algorithm the definition of characteristic sets and pseudo remainders is used.
Ritt-Wu’s algorithm (see char_series) computes these sets. According to von zur
Gathen ([vzGG99]) such a characteristic set is similar to a lexicographical Groebner
basis. In the last subsection I describe how to extend the RealPoly algorithm which
was introduced in Chapter 2 for the special case m = 0.

After describing the machinery for the univariate case, an algorithm to compute the
zero-dimensional radical is explained in Chapter 4. In contrast to the article of Becker
and Neuhaus, the decision was to compute the primary decomposition of the zero-
dimensional input and to give a heuristic to decide whether a maximal ideal is real
or not. This heuristic yields a procedure prepare_max. The procedure prepare_max
prepares a maximal ideal in such a way that we can avoid a coordinate change into
general position as often as possible. If a coordinate change can’t be avoided we use
the procedure GeneralPos. The input is a list of maximal ideals where this change
can’t be avoided. Here a suitably randomized coordinate change is computed such that
we can check the properties of prepare_max for the transformed maximal ideals and
afterwards we intersect all real maximal ideals of this list. The procedure RealZero
gets a zero-dimensional input I and computes its primary decomposition. Then it
picks every maximal ideal and tests if a change is needed to compute the real part.
Afterwards it intersects the real radicals of all these ’nice’ maximal ideals and restarts
the procedure GeneralPos for the list of ’bad’ ideals.

Finally, Chapter 5 describes the root of the reduction, the final algorithm for the
higher dimensional computations. This part mainly follows the ideas of the article
from Becker and Neuhaus.
In the first section the concept of real isolated points is introduced. Here a point
a ∈ VF (I) is called real isolated in the topological space Vre(I) if it is isolated in some
variety VR(I) with respect to the order topology for some real closed intermediate
field R of the field extension [F : F ]. The set of all these isolated points (i.e. we
choose every real closed field R in this extension and merge all these sets) is denoted
by VIso(I). We will see that the vanishing ideal IIso := VF (VIso(I)) is the (finite)
intersection of maximal ideals M1, . . . ,Mr such that any zero-dimensional component
of re
√

I occurs among the Mi. This fact allows the construction of the zero-dimensional
components of re

√
I: Although we do not know how to compute IIso exactly we are able

to give a recursive method for the construction of an ideal J such that dim J ≤ 0 and
I ⊆ J ⊆ IIso, which meets our requirement in connection with the computation of real
radicals. In the final section the algorithm for the higher dimensional computation is
described. The central result of this subsection which describes the whole algorithm
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is
re
√

I =
⋂

S({x1,...,xn}

(
re
√

J (S) ∩ F [x1, . . . , xn]),

where F = Q(y1, y2, . . . , ym) and I � F [x1, . . . , xn] are of arbitrary dimension. This
gives the algorithm and finishes my Diplomarbeit.
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1 Real radicals, definition and
properties

1.1 Motivation

Among the foundation of algebraic geometry there is Hilbert’s Nullstellensatz. It gives
rise to the correspondence between algebraic sets over algebraically closed fields L and
ideals of some affine algebras of subfields of L. Therefore we have to define some
machinery in algebraic geometry.

Definition 1.1
Let K be a field, I � L[x1, . . . , xn] be an ideal. For any extension field L of K we
define:

• VL(I) := {a ∈ Ln : f(a) = 0 ∀f ∈ I}, these sets are called K-varieties in Ln.

• For any X ⊂ Ln let IK(X) := {f ∈ K[x1, . . . , xn] : f|X = 0} be the ideal of X.

As usual K will denote the algebraic closure of the field K.

Now the geometric Nullstellensatz, which can be found in any textbook on algebraic
geometry (e.g. see [GP02], p. 217 Theorem 3.5.2), is:

Theorem 1.2 (Hilbert’s Nullstellensatz)
Let K be any field and K its algebraic closure, I � K[x1, . . . , xn] an ideal. Then

IK(VK(I)) =
√

I

In a beginners’ course on algebraic geometry, one always deals with complex algebraic
geometry, i.e. all fields which occur are subfields of the complex numbers C. As C is
algebraically closed, we know that for any subfield K ⊂ C its algebraic closure is a
subfield of C. If we now choose any ideal I � K[x1, . . . , xn], we will always consider
VC(I). In this case we have a special form for Hilbert’s Nullstellensatz.
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1 Real radicals, definition and properties

Theorem 1.3 (Special form of Hilbert’s Nullstellensatz)
Let K ⊂ C be any subfield of C. For any ideal I � K[x1, . . . , xn]. Then:

IK(VC(I)) =
√

I

Example 1.4
1. Let K = C and I = 〈x2 + y2 + 1, x2 − 1〉. Then

• VC(I) = {(1,
√

2i); (1,−
√

2i); (−1,
√

2i), (−1,−
√

2i)}

• IC(VC(I)) = 〈x2 − 1, y2 + 2〉

2. Now let K = Q and I be the same ideal as before. Let us now consider VR(I):
Since x2 +y2 +1 = 0 has no real solutions, we conclude VR(I) = ∅ and therefore
IQ(VR(I)) = Q[x, y].

The following sections deal with the behavior of the IK and VR functors over subfields
of R. From now on, if not denoted otherwise, K is a subfield of the real numbers R
which contains Q.

1.2 The real radical

Definition 1.5 (Real radical)
Let A be an affine K-algebra, I � A any ideal. We define the real radical of I to be

re
√

I := 〈f ∈ A : ∃r, m ∈ N : f 2r +
m∑

i=1

kig
2
i ∈ I, ki ∈ K≥0, gi ∈ A〉

I is called real iff re
√

I = I.

Example 1.6
1. Let K = Q and I = 〈x2 + y2 + 1, x2 − 1〉 from Example 1.4. Now 1 ∈ re

√
I,

because 1 + (x2 + y2) ∈ I. Hence re
√

I = Q[x, y]. We conclude:

IK(VR(I)) = Q[x, y] =
re
√

I

2. K = Q, I = 〈xy2 + 1, x− 1〉. In this case

• 1 + y2 = xy2 + 1− y2(x− 1) ∈ I ⇒ 1 ∈ re
√

I ⇒ re
√

I = Q[x, y]

• VR(I) = ∅, because x = 1 yields y2 + 1 = 0
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1.2 The real radical

And again: IK(VR(I)) = re
√

I

3. K = Q(
√

2), I = 〈x2 − 3〉. We have:

• VR(I) = {
√

3,−
√

3}

• IQ(
√

2)(VR(I)) = I

Claim: I is real
Proof
Let f ∈ re

√
I. Then there is an r ∈ N and a t =

m∑
i=1

kig
2
i ∈ I where ki ∈

Q(
√

2)≥0, gi ∈ Q(
√

2)[x] s.t. f 2r + t ∈ I. So (f 2r + t)(
√

3) = 0
t(
√

3)≥0
=⇒ f 2r(

√
3) =

0 = f(
√

3)
f∈Q(

√
2)[x]

=⇒ f ∈ I �

Again we observe IK(VR(I)) = re
√

I.

Indeed the following special result holds. Krivine proved it in the 60s, for detailed
information see appendix chapter B. ( This theorem is a special form of the Real
Nullstellensatz. (cf. Theorem B.14))
Theorem 1.7 (Special Real Nullstellensatz)
Let J � K[x1, . . . , xn], then:

IK(VR(J)) =
re
√

J

In the next section, we will see that real radicals in Real Algebraic Geometry are of
the same importance as radicals in Complex Algebraic Geometry.

Before going on, we state the following short lemma about the properties of real
radicals:
Lemma 1.8
Let I, J � K[x1, . . . , xn] be ideals, then:

i. re
√

I is a radical ideal

ii. re
√

I is a real ideal

iii. re
√

I ∩ J = re
√

I ∩ re
√

J

iv. Let S ⊂ K[x1, . . . , xn] be multiplicatively closed, s.th. 1 ∈ S and 0 6∈ S, then
taking the real radical commutes with localization, i.e.:

re
√

IS = (
re
√

I)S
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1 Real radicals, definition and properties

Proof
The properties i.-iii. are clear from the definition of the real radical or from the Real
Nullstellensatz. For Property iv. see Theorem B.4. �

1.3 Associated primes of real radical ideals

The primary decomposition of a real ideal I provides information on the structure of
the irreducible components of the variety VK(I) . So recalling further properties about
the primary decomposition will help us to study our varieties in a better way.
Lemma 1.9
Let I � K[x1, . . . , xn] be a real ideal. Then every minimal prime of I is real.

Proof
See Lemma B.5. �

As a corollary to this lemma we get:
Corollary 1.10
Let I �K[x1, . . . , xn] be any ideal. Let Γ(I) := {M � ·K[x1, . . . , xn] : M ⊃ I and real}
and ∆(I) := {P � K[x1, . . . , xn] : P is prime, real and contains I}. Then the follow-
ing equations hold:

i. re
√

I =
⋂

P∈∆(I) =
⋂

P∈Min( re√I)

P

ii. re
√

I =
⋂

M∈Γ(I) M

Proof
To i: re

√
I is real and radical, thus all minimal prime ideals of re

√
I are real by Lemma

1.9. Now the statement follows immediately from the fact that I ⊂ P implies
re
√

I ⊂ re
√

P for all prime ideals P ⊃ I. So:

re
√

I
re√I is radical

=
⋂

P∈Min( re√I)

P
1.9
=

⋂
P∈∆(I)

P

To ii: We prove the result by contradiction. Let

R = {I � K[x1, . . . , xn] :
re
√

I 6=
⋂

M∈Γ(I)

M}.

Our claim is that R = ∅.
Assume R 6= ∅:
R is partially ordered by inclusion and K[x1, . . . , xn] is noetherian, so there
exists a G ∈ R maximal w.r.t. inclusion. Now we have the following situation:
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1.3 Associated primes of real radical ideals

• re
√

G ⊃ G and re
√

re
√

G = re
√

G, but as G is maximal w.r.t. inclusion G is
real.

• G is neither a maximal ideal nor the whole polynomial ring, as for maxi-
mal ideals and the whole ring, the assertion trivially holds.

Let g be a polynomial which is not in G. Then the chain G, G : g,G : g2, . . .
gets stationary as K[x1, . . . , xn] is noetherian. So there exists an m such that
G : gm = G : gl for all l ≥ m. Set f = gm, then:

i. G : f = G : f 2,

ii. G = 〈G, f〉 ∩G : f , by Lemma 1.4.10 on page 25 in [dJP00].

iii. G is a proper subideal of 〈G, f〉 and G : f .

Hence 〈G, f〉 and G : f satisfy the assertion, i.e:

re
√
〈G, f〉 =

⋂
M∈Γ(〈G,f〉)

M (1.1)

re
√

G : f =
⋂

M∈Γ(G:f)

M̄ (1.2)

Thus, we have:

G =
re
√

G = re
√
〈G, f〉 ∩ re

√
G : f

= (
⋂

M∈Γ(〈G,f〉)

M) ∩ (
⋂

M̄∈Γ(G:f)

M̄)

=
⋂

M∈(Γ(〈G,f〉)∩Γ(G:f))

M

=
⋂

M∈Γ(G)

M

This contradicts G ∈ R, implying R = ∅ �

The following example shows that re
√

I 6=
⋂

P∈Min(I) and real P .

Example 1.11
Let I = 〈x2 + y2〉�Q[x, y]. Then the only real point of I is (0, 0), hence re

√
I = 〈x, y〉.

Now I is prime and the primary decomposition of I is I = P . As I is not real we
conclude that re

√
I 6=

⋂
P∈Min(I) and real P .
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1 Real radicals, definition and properties

We conclude, from the second part of the previous corollary, that this does not happen
if I has dimension 0, as every maximal ideal containing a zero-dimensional ideal I is al-
ready minimal. So if I is any zero-dimensional ideal, then re

√
I =

⋂
P∈Min(I) and real P .

In the next two chapters we restrict ourselves to the special case of univariate poly-
nomials. The second chapter deals with univariate polynomials f over the field Q
and the third chapter will deal with univariate polynomials over the transcendent ex-
tension fields Q(y1, y2, . . . , ym). After these chapters we obtain via reduction to the
univariate case an algorithm to compute the real radical of a zero-dimensional ideal I
over the (transcendent) field extension Q(y1, y2, . . . , ym).

To conclude this chapter we use the notion of the real radical to explain how our
well-known 1:1 correspondences from algebraic geometry can be translated to Real
Algebraic Geometry.

1.3.1 One-to-one correspondences in real algebraic geometry

Let K be any subfield of R, then:

real radical ideals in K[x1, . . . , xn]
1:1←→ K-varieties in Rn

real prime ideals in K[x1, . . . , xn]
1:1←→ irreducible K-varieties in Rn

real maximal ideals in K[x1, . . . , xn]
1:1←→ irreducible K-varieties of dimension 0 in Rn

So every correspondence over C occurs in a natural way by means of real radicals in
real algebraic geometry. Let us consider an example:

Example 1.12
Let K = Q and let I = 〈x8 + x6 + 4x5 + 4x3 + 4x2 + 4〉. Applying the primary
decomposition in Singular, we get:

> ring r=0,x,dp;
> ideal I=x8+x6+4x5+4x3+4x2+4;
> LIB "primdec.lib";
> primdecGTZ(I);
[1]:

[1]:
_[1]=x6+4x3+4

[2]:

16



1.3 Associated primes of real radical ideals

_[1]=x3+2
[2]:

[1]:
_[1]=x2+1

[2]:
_[1]=x2+1

So the associated prime ideals are P1 = 〈x3 + 2〉 and P2 = 〈x2 + 1〉.
√

I = P1 ∩ P2.
Now we want to determine whether the Pi are real.

• P2 is obviously not real, since 1 ∈ re
√

P 2, so re
√

P 2 = Q[x].

• VR(P1) = {− 3
√

2} and x3 +2 ∈ Q[x] is the minimal polynomial of − 3
√

2 in Q[x].
Hence IQ(− 3

√
2) = 〈x3 + 2〉 and therefore P1 is real.

We conclude re
√

I = P1 = 〈x3 + 2〉.
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1 Real radicals, definition and properties
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2 Special univariate case

To obtain an algorithm for the zero-dimensional case, we first consider the univariate
case, i.e. ideals in the principal ideal domain K[x]. I shall recall some theorems,
like unique factorization, the fundamental theorem of algebra and Sturm’s theorem to
count the number of all distinct real roots of a polynomial f ∈ K[x].

Theorem 2.1 (Unique factorization (cf. [vzGG99]))
Let f ∈ K[x] be a polynomial with deg f ≥ 1. Then there exist (up to permutation and
multiplication with units) unique non-associated irreducible polynomials p1, . . . , pr ∈
K[x], m1, . . . mr ∈ N and a unit ε, such that

f = εpm1
1 · pm2

2 · · · pmr
r .

As a direct consequence every irreducible polynomial is prime and has no root in K.
Moreover every irreducible polynomial p is the minimal polynomial of an algebraic
extension of K.
Let us consider the real zero-set of a polynomial f ∈ K[x].
As there exists no formula to solve the polynomial equation f = 0 using only roots
and arithmetic operations if deg f ≥ 5, we aren’t able to compute the roots without
using numerical methods.

But as we will see soon, we are only interested in their existence. To solve the problem
of the existence of real roots see [BPR03] Chapter 10 and [BCR98] Chapter 1.2. Here
I only state some theorems without proving everything.

Definition 2.2
Let p ∈ K[x] be an irreducible polynomial. We call p real if p has a real root α ∈ R.
Then p is the minimal polynomial of this root α.

If we now compute the real radical of 〈f〉 � K[x], we know that factorizing f corre-
sponds to the primary decomposition. So if

f = εpm1
1 · pm2

2 · · · pmr
r

then the 〈pi〉, for all i = 1, . . . , r are precisely the minimal primes of 〈f〉. Such a
minimal prime is real iff VR(pi) 6= ∅, i.e. if p has a real root. So 〈pi〉 is real iff pi is
real.
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2 Special univariate case

Hence the real radical of 〈f〉 is:

re
√
〈f〉 = 〈

∏
pi real

pi〉.

This leads us directly to the demand of a criterion to know whether an irreducible
polynomial p is real or not.
We have two cases:
If the degree of p is odd the fundamental theorem of algebra over R tells that p has
a real root. But if the degree of p is even, we can’t be sure if p has a real root. In
this case we use the theorem of Sturm, which counts the number of all distinct real
roots of a non–constant polynomial f ∈ K[x] in an interval [a, b], where a < b. As
Sturm’s theorem is algorithmically very inefficient, we will also use the property that
every polynomial over R is a continuous map. Thus if f(a) · f(b) ≤ 0 we know that
0 ∈ f [a, b], so f has a real root.
To state Sturm’s theorem we first define the notion of a Sturm Sequence. (cf [Coh93])

2.1 Sturm sequences and Sturm’s theorem

Definition 2.3 (Sturm sequence)
Let f ∈ R[x] be any polynomial and f ′ its formal derivative. Then the Sturm sequence
(f0, f1, . . . , fr) with f0 = f, f1 = f ′ is defined recursively by

f0 = q1f1 − f2

f1 = q2f2 − f3

...
fr−2 = qr−1fr−1 − fr

fr−1 = qrfr

with r ≥ 1 and f0, . . . , fr, qi, . . . qr ∈ R[x] and deg fi < deg fi−1, which determines r
and the fi, qj uniquely.

Note that changing the minus on the right hand side to a plus leads to the well-known
version of the Euclidean algorithm.

In particular fr = gcd(f, f ′). This difference is essential for Sturm’s theorem.

Notation 2.4
Let (co, c1, . . . cr) ∈ Rr+1 be any (r + 1)-sequence, then:

1. Var(co, c1, . . . cr) is the number of sign changes of (co, c1, . . . cr) ∈ Rr+1 after
cancelling all zeros in the sequence. We set Var(0, 0, . . . , 0) := −1.
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2.1 Sturm sequences and Sturm’s theorem

2. For any t ∈ R we set vf (t) := Var(f0(t), f1(t), . . . , fr(t)), where (f0, f1, . . . , fr)
is the Sturm sequence of f . If there is no confusion about f we simply write v(t)
instead of vf (t).

Theorem 2.5 (Sturm 1829)
Let f ∈ R[x] be a non-constant polynomial and a, b ∈ R, s.t. a < b and f(a) ·f(b) 6= 0.
Then the number of all distinct roots in the interval (a, b) is v(a)− v(b).

To get a more detailed information in which interval the real roots lie, I state the
following short lemma:

Lemma 2.6
Let f(x) = a0t

n + a1t
n−1 + . . . + an−1t + an ∈ R[x] a polynomial of degree n. Then all

real roots of f are in [−M, M ], where

M := max{1, |a1|+ . . . + |an|
|a0|

}

This M is is called the Cauchy bound C(f) of f.

Proof
Let us first assume, without loss of generality, that a0 = 1. For any root α ∈ R∗ of f ,
i.e. with f(α) = 0 we have:

α = −(a1 + a2α
−1 + .. + anα

1−n)

Thus

|α| = |a1 + a2α
−1 + .. + anα

1−n| ≤ |a1|+ |a2| · |α|−1 + . . . + |an| · |α|1−n.

Hence |α| ≤ 1 or |α| ≤ |a1|+ . . . + |an|. �

With this interval we conclude the following corollary:

Corollary 2.7
Let f and M be defined a above, then the number of all distinct real root of f is
v(−M − 1)− v(M + 1).

Let us see some arguments to implement the algorithm only over Q.

The Singular representation of Q(
√

2)[x] is:

> ring r=(0,a),x,dp;
> minpoly=a2-2;
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2 Special univariate case

But the minimal polynomial a2 − 2 has 2 roots in Q(
√

2), namely
√

2 and −
√

2. In
this simple case Singular can’t be sure whether a is the positive or the negative root
of 2.
As another example consider Q(

√
2 +
√

3) = Q(
√

2,
√

3). The minimal polynomial of√
2 +
√

3 is a4 − 10a2 + 1. Its roots are
√

2 +
√

3;
√

2−
√

3,−
√

2−
√

3,−
√

2 +
√

3. If
we now present this field in Singular, we have the sign problem once more.

How can we possibly decide whether an element of Q(a) is positive if we do not even
know whether a is positive?

The statement whether for example x2+a is real depends on which a we have chosen.

An idea to get rid of this problem could be giving a floating point approximation of
which root we choose. But if we come back to the example with

√
2 = 1, 414213562...

Every approximation would yield numerical mistakes for example:

Is 1, 4142135621−
√

2 positive or negative?

This mistakes would be fatal for the computation of the real radical.

In R the factorization isn’t implemented. Here again the reasons are numerical mis-
takes. Because of all these problems, I decided to implement the algorithm only over
the ground field Q.

Let us view an example for the computation with Sturm Sequences and the Sturm
theorem 1:
Example 2.8
> LIB "rootsur.lib";//LIB for counting roots
// ** loaded /usr/share/Singular/LIB/rootsur.lib (1.75,2005/10/28)
> ring r=0,x,dp;
> poly f=x10+9x9+x8+27x6+x2+1;
> sturmseq(f);
[1]:

x10+9x9+x8+27x6+x2+1
[2]:

x9+81/10x8+4/5x7+81/5x5+1/5x
[3]:

x8+72/709x7-1080/709x6+1458/709x5-80/709x2+18/709x-100/709
[4]:

1To get rid of the problem that the coefficients grow higher and higher the command sturmseq
divides every polynomial bye the absolute value of its leading coefficient. So all leading coefficients
in our computation are 1 or -1.
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2.1 Sturm sequences and Sturm’s theorem

-x7-509085/75956x6+6237/37978x5-1418/18989x3-44091/75956x2
-102/1117x-56709/75956

[5]:
-x6-293058/12923783x5+607648/348942141x4+79172/38771349x3-
29517859/348942141x2+35700/12923783x-38954237/348942141

[6]:
-x5+162370773/3727998286x4+22101077/1863999143x3+
216017847/3727998286x2-55440544/9319995715x+27145044/9319995715

[7]:
x4+1645949589660/377458982597x3+11974361093723/1887294912985x2-
35388752256/1887294912985x+16234786802188/1887294912985

[8]:
x3+98742954999870/45465619987631x2-30711339770675/45465619987631x+
268106006636523/90931239975262

[9]:
-x2+9058629616172377/13791803211944376x-
58833564722327827/62063114453749692

[10]:
-x-10053821393606153558/8827044072076166007

[11]:
1

> sturm(f,-40,40);
2
//The polynomial has 2 distinct real roots
> factorize(f,2);
[1]:

_[1]=x10+9x9+x8+27x6+x2+1
[2]:

1
//The polynomial is irreducible and thus real

In addition to Sturm’s theorem the sign rules of Descartes are of some importance to
solve the root counting problem. So at the end of this section, I state this important
theorem.

Theorem 2.9 (Descartes (cf. [Bro96], Theorem 2.33))
Let f = fnx

n + fn−1x
n−1 + . . . f1x + f0 ∈ R[x] and let pos(f) be the number of all

positive roots of f counted with multiplicity. Let

Var(f) := Var(fn, fn−1, . . . , f0)

then:

• Var(f) ≥ pos(f)
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2 Special univariate case

• Var(f)− pos(f) is even.

2.2 The procedure RealPoly

I shortly describe a procedure to test whether a univariate irreducible monic polyno-
mial is real over Q or not.

Definition 2.10 (Length of a polynomial)
Let f = xn + f1x

n−1 + . . . + fn−1x + fn be any polynomial in K[x], then we define the
length of f to be

length(f) := 1 + |f1|+ . . . + |fn|.

So length(f) ≥M + 1, where M = max{1, |f2|+ . . . + |fn|} as defined in Lemma 2.6,
i.e. every real root of f is in [−length(f), length(f)].

The following Singular procedure computes the length of an arbitrary polynomial f .

static proc length(poly f)
"USAGE: length(f); poly f;
RETURN: sum of the absolute value of all coefficients of an

irreducible polynomial f
EXAMPLE: example length; shows no example"

{
number erg,buffer;
f=simplify(f,1);//wlog f is monic
int n=size(f);
for (int i=1;i<=n;i=i+1){

buffer= leadcoef(f[i]);
erg=erg + absValue(buffer);

}

return(erg);
}

We can test now whether a univariate polynomial is real or not.

From the fundamental theorem of algebra, we conclude that every polynomial f of
odd degree has a real root. So the only case in which we use Sturm’s Theorem is if
the degree of f is even.
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2.2 The procedure RealPoly

Now a polynomial is real if the number of real roots is not equal to zero. So in the
case of an irreducible polynomial f of even degree we count the real roots. Obviously
we get the following procedure:

static proc is_real(poly f)
"USAGE: is_real(f); a univariate irreducible polynomial f;
RETURN: 1: if f is real

0: is f is not real
EXAMPLE: example is_real; shows an example"

{
int d,anz;
if (isuniv(f)==0) {return(0);};//f has to be univariate
d=deg(f) mod 2;
if (d==1)
{

return(1);//because of fundamental theorem of algebra
}
else
{
f=simplify(f,1);//wlog we can assume that f is monic
number a=leadcoef(sign(leadcoef(subst(f,isuni(f),-length(f)))));
number b=leadcoef(sign(leadcoef(subst(f,isuni(f),length(f)))));
if
(a*b!=1)
//polynomials are continuous so the image is an interval
//refers to analysis
{

return(1);
}
else
{

anz=sturm(f,-length(f),length(f));
if (anz==0) {return(0);}
else {return(1);};

}
};

}
example
{ "EXAMPLE:"; echo = 2;

ring r1 = 0,x,dp;
poly f=x2+1;
is_real(f);
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2 Special univariate case

}

As the univariate case is essential for an algorithm in the zero-dimensional case, I state
the resulting procedure to compute the real part of a polynomial f ∈ Q[x] in some
arbitrary variable x.

proc RealPoly(poly f)
"USAGE: RealPoly(f); poly f;
RETURN: poly f, where f is the real part of the input f
EXAMPLE: example RealPoly; shows an example"
{
if (f==1) {return(f);};
ideal j=factorize(f,1);//for getting the square-free factorization
poly erg=1;
for (int i=1;i<=size(j);i=i+1)
{
if (is_real(j[i])==1) {erg=erg*j[i];};
//we only need real primes

}
return(erg);

}
example
{ "EXAMPLE:"; echo = 2;

ring r1 = 0,x,dp;
poly f=x5+16x2+x+1;
RealPoly(f);
RealPoly(f*(x4+2));

}
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3 The general univariate case

The aim of this chapter is to extend the theory given in Chapter 2 and to give an
algorithm to compute the real radical of a polynomial f in Q(y1, y2, . . . , ym)[x], where
y1, y2, . . . , ym are parameters so that Q(y1, y2, . . . , ym) is a transcendent extension of
the rational numbers.

In the first section we explain an algorithm to find an isolating set for any univariate
polynomial f ∈ R[x]. This can be simply understood as a finite set Γ ⊂ Q which
separates the real roots of f . As a reference for this section see [BPR03] Chapter 10.2.
In particular, the theory of Bernstein coefficients is introduced. The next section uses
the algorithm to find an isolating set and states an algorithm to decide whether a
multivariate polynomial is positive semi-definite or not. Here I refer to the article of
Zeng& Zeng (see [GX04]). The chapter is concluded in the last subsection, where we
extend the RealPoly algorithm of Chapter 2.

During the computation of the real part of an arbitrary multivariate polynomial the
following special form of Lemma 4.1 in [BN98] is of great importance:

Lemma 3.1
Let p ∈ Q[y1, y2, . . . , ym, x], where m ∈ N0 and degx p > 0 be an irreducible polynomial.
Then the following conditions are equivalent:

(a) 〈p〉 ·Q(y1, y2, . . . , ym)[x] is real

(b) 〈p〉 ·Q[y1, y2, . . . , ym, x] is real

(c) p is indefinite over R, i.e. there are points a, b ∈ Rm+1 satisfying p(a) · p(b) < 0

Proof
(a) =⇒ (b) Let f ∈ re

√
〈p〉 ·Q[y1, y2, . . . , ym, x] be an arbitrary polynomial. We have

to show that f ∈ 〈p〉 ·Q[y1, y2, . . . , ym, x].
As f ∈ re

√
〈p〉 ·Q[y1, y2, . . . , ym, x] we get after localization that

f ∈ re
√
〈p〉 ·Q(y1, y2, . . . , ym)[x] = 〈p〉 ·Q(y1, y2, . . . , ym)[x],

i.e. p divides f in Q(y1, y2, . . . , ym)[x] (∗).
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3 The general univariate case

Our aim is to show that p also divides f in Q[y1, y2, . . . , ym, x].
Applying pseudo-division with remainder to f and p in (Q[y1, y2, . . . , ym])[x] (see
[vzGG99], Chapter 6.12) implies that there exists an α ∈ Q[y1, y2, . . . , ym] s.t.
there are unique polynomials q, r ∈ (Q[y1, y2, . . . , ym])[x] = Q[y1, y2, . . . , ym, x]
with:

α · f = q · p + r and degx r < degxp.

As this equality also holds in Q(y1, y2, . . . , ym)[x] and α ∈ Q[y1, y2, . . . , ym] is a
unit in Q(y1, y2, . . . , ym), we conclude from (∗) that r = 0 in Q(y1, y2, . . . , ym)[x]
and thus r = 0 in Q[y1, y2, . . . , ym, x], i.e. p|α · f in Q[y1, y2, . . . , ym, x].

p is prime inQ[y1, y2, . . . , ym, x] and of positive degree in x, hence p doesn’t divide
α, so p divides f . Thus f ∈ 〈p〉 ·Q[y1, y2, . . . , ym, x] and 〈p〉 ·Q[y1, y2, . . . , ym, x]
is real.

(b) =⇒ (a) This is clear from Lemma 1.8.

(b) ⇐⇒ (c) For this equivalence see Remark B.11. �

According to this lemma we get the following corollary.
Corollary 3.2
If there exists an algorithm to decide whether a polynomial f ∈
Q[y1, y2, . . . , ym, x] is indefinite, it is possible to compute real radicals in the principal
ideal domain Q(y1, y2, . . . , ym)[x].
Proof
This is simply analogous to Chapter 2, which is the special case that m = 0.
So let F := Q(y1, y2, . . . , ym) and I � F [x] an arbitrary ideal. Then there exists an
f ∈ F [x] s.t. I = 〈f〉. The algorithm is as follows:

1. Factorize f in F [x], i.e. f = ε · pa1
1 · · · par

r .

2. Decide for every pi if it is real via the decision of indefiniteness overQ[y1, y2, . . . , ym, x]

3. Now re
√
〈f〉 = 〈

∏
pi is real

pi〉 �

In the rest of this chapter, I describe a solution to decide the problem of indefiniteness
of a polynomial in Q[x1, . . . , xn]. This algorithm will act via reduction of variables
in each step. Therefore we will need some machinery for the univariate case, i.e. a
polynomial in Q[x].

In the univariate case there are two problems:
We have to decide whether a univariate polynomial is indefinite and to obtain an
algorithm to find an isolating set for a polynomial f ∈ Q[x].
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3.1 How to compute an isolating set of a univariate polynomial f ∈ Q[x]

3.1 How to compute an isolating set of a univariate
polynomial f ∈ Q[x]

The main ideas of this subsection can be found in the book by M.-F.Roy, R.Pollack
and S.Basu (see [BPR03], Chapter 10.2).

First we define isolating sets:

Definition 3.3 (Isolating set)
Let f ∈ Q[x] \ {0} be a polynomial. Then a finite set Γ := {a1, . . . , am} ⊂ Q is called
an isolating set of f if

1. for every a ∈ Γ: f(a) 6= 0.

2. Assume that a1 ≤ a2 ≤ . . . ≤ am. Then f has a most one zero in every (ai, ai+1)
and for every zero α of f there is an i such that α ∈ (ai, ai+1).

3. An isolating set is called minimal if |Γ| is minimal, i.e. if |Γ| = num(f) + 1 where
num(f) is the number of all distinct real roots of f .

If deg f = 0, then we set Γ = {0}

Remark 3.4
Property 3 tells that every real root α of f is isolated by exactly 2 points ai, ai+1, such
that the interval (ai, ai+1) does only contain α as real root of f .

3.1.1 Bernstein polynomials and coefficients

Notation 3.5
The Bernstein polynomials of degree n with respect to the basis (l, r) are

Bernn,i(l, r) =

(
n

i

)
(x− l)i · (r − x)n−i

(r − l)n
,

for i = 0, . . . , p.

Remark 3.6
Note that Bernn.i(l, r) = (−1)nBernn,n−i(r, l) and that

Bernn,i(l, r) =
x− l

r − l
· n

i
Bernn−1,i−1(l, r)

=
r − x

r − l
· n

n− i
Bernn−1,i(l, r).
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3 The general univariate case

Let us consider some machinery to prove that the Bernstein polynomials form a basis
of polynomials of degree ≤ n:

All the three transformations I shall introduce are linear automorphisms from the
vector space of polynomials of degree at most d.

• Reciprocal polynomial in degree p:

Recn(f(x)) := xn · f(
1

x
).

The non-zero roots of f are the inverses of the non-zero roots of Rec(f).

• Contraction by ratio λ: for every non-zero λ let:

Coλ(f(x)) = f(λ · x).

The roots of Coλ(f) are of the form a
λ

where a is a zero of f .

• Translation by c: for every c let

Tc(f(x)) = f(x− c).

The roots of Tc(f(x)) are of the form a + c where a is a root of f .

The following proposition gives an idea how to compute the Bernstein coefficients of
an arbitrary polynomial of degree at most n. It also tell us that the set

{Bernn,i(l, r) : i = 0, . . . , n}

forms a basis of polynomials of degree at most n for every l, r.

Proposition 3.7
Let f =

∑n
i=0 biBernd,i(l, r) ∈ R[x] be of degree ≤ n.

Let T−1(Recd(Cor−l(T−l(f)))) =
∑n

i=0 cix
i. Then

(
n
i

)
bi = cn−i

Proof
As all these transformations are additive, since they are automorphisms, we prove this
for an arbitrary Bernn,i(l, r) =

(
n
i

)
· (x−l)i·(r−x)n−i

(r−l)n . It is:
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3.1 How to compute an isolating set of a univariate polynomial f ∈ Q[x]

T−1(Recd(Cor−l(T−l(bi

(
n

i

)
· (x− l)i · (r − x)d−i

(r − l)n
)))) =

T−1(Recd(Cor−l(bi

(
n

i

)
xi · ((r − l − x))n−i

(r − l)n
))) =

T−1(Recd(bi

(
n

i

)
((r − l)x)i · ((r − l) · (1− x))n−i

(r − l)n
)) =

T−1(Recd(bi

(
n

i

)
xi · (1− x)n−i)) =

T−1(bi

(
n

i

)
1

x

i

· (x− 1

x
)n−i · xn) =

T−1(bi

(
n

i

)
(x− 1)n−i) = bi

(
n

i

)
xn−i

�

Hence, using Proposition 3.7, it is possible to compute the Bernstein coefficients for
every polynomial.

Let us consider an example of degree 3.

Example 3.8
Let f = (x−1) · (x+1) · (x+2) = x3 +2x2−x−2, then length(f) = 6. The Bernstein
polynomials in the basis (−6, 6) are:

• Bern3,0(−6, 6) = (x+6)0·(6−x)3

(6−(−6))3
= − 1

1728
x3 + 1

96
x2 − 1

16
x + 1

8

• Bern3,1(−6, 6) = (x+6)1·(6−x)2

(6−(−6))3
= 1

576
x3 − 1

96
x2 − 1

16
x + 3

8

• Bern3,2(−6, 6) = (x+6)2·(6−x)1

(6−(−6))3
= − 1

576
x3 − 1

96
x2 + 1

16
x + 3

8

• Bern3,3(−6, 6) = (x+6)3·(6−x)0

(6−(−6))3
= 1

1728
x3 + 1

96
x2 + 1

16
x + 1

8

Let us now compute the Bernstein coefficients of f according to Proposition 3.7.

Step 1: f1 := T−6(f) = f(x− 6) = x3 − 16x2 + 83x− 140

Step 2: f2 := C6−(−6)(f1) = C12(f1) = f1(12x) = 1728x3 − 2304x2 + 996x− 140

Step 3: f3 := Rec3(f2) = −140x3 + 996x2 − 2304x + 1728

Step 4: f4 := T−1(f3) = f3(x + 1) = −140x3 + 576x2 − 732x + 280
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3 The general univariate case

Step 5: The Bernstein coefficients are

a) b0 = −140

(3
0)

= −140

b) b1 = 576

(3
1)

= 192

c) b2 = −732

(3
2)

= −244

d) b3 = 280

(3
3)

= 280

The correctness of the result can be tested easily by direct computation, e.g. using
Singular.

Remark 3.9
The list b = b0, . . . , bn of coefficients of f in the Bernstein basis of (l, r) gives the value
of f at l (resp. r), which is equal to b0 (resp. bn). Moreover:
The sign of f at the right of l (resp.left of r) is given by the first (resp. last) non-zero
element of the list b.

As in Chapter 2, let Var(b) denote the number of sign variations of b = (b0, . . . bm).
Note that, if Var(b) = 0, where b is the list of Bernstein coefficients of a polynomial
f in (l, r), the sign of f on (l, r) is the sign of any non-zero element of b, since the
Bernstein polynomials for l, r are positive on (l, r). Thus f has no root in (l, r). More
generally, the following holds:

Proposition 3.10
Let f ∈ R[x] be of degree n and let b = b0, . . . , bn be the list of the Bernstein coefficients
of f in (l, r). Let num(f, (l, r)) be the number of roots of f in (l, r) counted with
multiplicities. Then

• Var(b) ≥ num(f, (l, r))

• Var(b)− num(f, (l, r)) is even

Proof
The claim follows immediately from Descartes’ law of signs (Theorem 2.9), using
Proposition 3.7. Indeed, the image of (l, r) under translation by −l followed by con-
traction of ratio r − l is (0, 1). The image of (0, 1) under the inversion z 7→ 1

z
is

(1, +∞). Finally, translating by −1 gives (0, +∞). �

As a direct consequence of this proposition we get the following corollary.
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Corollary 3.11
Let the notations be as above. If Var(b) = 1 then f has exactly one root in (l, r).

The proof of the following proposition can be found in [BPR03], p. 370 Prop. 10.41.

Proposition 3.12
Let b, b′ and b′′ be the lists of coefficients of f in the Bernstein basis of (l, r), (l,m) and
(m, r). If l < m < r, then

Var(b′) + Var(b′′) ≤ Var(b).

Moreover, if m is not a root of f , Var(b)− Var(b′)− Var(b′′) is even.

As an improvement over Sturm’s sequences, there exists a combinatorial algorithm to
compute the lists b′ and b′′ for a given list b for the Bernstein basis of (l, r) with a
given m. This makes the Bernstein coefficients easier to handle in computations.

I first state the algorithm and prove the correctness afterwards.

Algorithm 3.1 (Bernstein Coefficients)
proc Bernsteincoef(l,r,m)

INPUT : a list b = b0, . . . , bn representing a polynomial f of degree at most n in the
Bernstein basis of (l, r) and m ∈ Q

OUTPUT: a list b′ representing f in the Bernstein basis (l,m) and a list b′′ repre-
senting f in the Bernstein basis of (m, r)

BEGIN

Define α = r−m
r−l

, β = m−l
r−l

Initialize: b
(0)
j = bj, j = 0, . . . , n

For (i = 1 to n)

{

For (j = 1 to n− i)

{

b
(i)
j := αb

(i−1)
j + βb

(i−1)
j+1 ;
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3 The general univariate case

}

}

OUTPUT:

b′ := b
(0)
0 , . . . , b

(j)
0 , . . . , b

(n)
0

b′′ := b
(n)
0 , . . . , b

(n−j)
j , . . . , b

(0)
n

END

The algorithm can be visualized with the following triangle:

b
(0)
0 · · · · · · · · · · · · b

(0)
n

b
(1)
0 · · · · · · · · · b

(1)
n−1

. . . · · · · · · . . .

b
(i)
0 · · · b

(i)
n−i

b
(n−1)
0 b

(n−1)
1

b
(n)
0

with b
(i)
j := αb

(i−1)
j + βb

(i−1)
j+1 , α = r−m

r−l
, β = m−l

r−l
.

The coefficients of f in the Bernstein basis of (l, r) appear in the top side of the tri-
angle and the coefficients of f in the Bernstein basis (l,m) and (m, r) appear in the
two other sides of the triangle. Note that b

(n)
0 = f(m)

Before giving a detailed proof for the correctness we consider an example for a uni-
variate polynomial in degree 3.

Example 3.13
Let f = x3 + 2x2 − x− 2 be the polynomial of Example 3.8. Then
b = Bern(f,−6, 6) = (−140, 192,−244, 280)

1. case: m = 0

Bern3,i(−6, 0) =
(
3
i

)
(x+6)i·(0−x)3−i

63

Bern3,i(0, 6) =
(
3
i

)xi·(6−x)3−i

63

The computed α and β are:

• α = 6−0
6−(−6)

= 1
2
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• β = 0−(−6)
6−(−6)

= 1
2

The output of the algorithm visualized in the triangle is:

−140 192 −244 280
26 −26 18

0 −4
−2

So the lists b′ and b′′ are:

b′ = (−140.26, 0,−2)

b′′ = (−2,−4, 18, 280)

2. case: m = 3

Bern3,i(−6, 3) =
(
3
i

) (x+6)i·(3−x)3−i

63

Bern3,i(3, 6) =
(
3
i

) (x−3)i·(6−x)3−i

63

The computed α and β are:

• α = 6−3
6−(−6)

= 1
4

• β = 3−(−6)
6−(−6)

= 3
4

The output of the algorithm visualized in the triangle is:

−140 192 −244 280
109 −135 149

−74 78
40

So the lists b′ and b′′ are:

b′ = (−140, 109,−74, 40)

b′′ = (40, 78, 149, 280)

The following corollary demonstrates the correctness of Algorithm 3.1.

Corollary 3.14
The lists b′ and b′′ determined in Algorithm 3.1 are the correct Bernstein coefficients
in the basis (l,m) resp. (m, r)
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Proof
First of all it is easy to verify by a simple induction on i that

b
(i)
j =

i∑
l=0

(
i

l

)
αlβi−lb

(0)
j+l. (∗)

Note that for the basis (l,m)

x− l

r − l
= β

x− l

m− l
r − x

r − l
= α

x− l

m− l
+

m− x

m− l
.

Thus (
x− l

r − l

)i

= βi

(
x− l

m− l

)i

(
r − x

r − l

)n−i

=
n−i∑
k=0

(
n− i

k

)
αk

(
x− l

m− l

)k (
m− x

m− l

)n−i−k

.

It follows that

Bernn,j(l, r) =

(
n

j

)
(x− l)j(r − x)n−j

(r − l)n

=

(
n

j

) n∑
i=j

(
n− j

i− j

)
αi−jβj

(
x− l

m− l

)i(
m− x

m− l

)n−i

.

Since (
n

j

)(
n− j

i− j

)
=

(
i

j

)(
n

i

)
Bernn,j(l, r) =

n∑
i=j

(
i

j

)
αi−jβj

(
n

i

)
(
x− l

m− l
)i(

m− x

m− l
)n−i.

Finally

Bernn,j(l, r) =
n∑

i=j

(
i

j

)
αi−jβiBernn,i(l,m). (∗∗)

Now
n∑

j=0

b
(0)
j Bernn,j(l, r)

(∗∗)
=

n∑
j=0

b
(0)
j

(
n∑

i=j

(
i

j

)
αi−jβiBernn,i(l,m)

)
modify

=
indices

n∑
i=0

(
i∑

j=0

(
i

j

)
αjβi−jb

(0)
j

)
Bernn,i(l,m)

(∗)
=

n∑
i=0

b
(i)
0 Bernn,i(l,m)
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3.1 How to compute an isolating set of a univariate polynomial f ∈ Q[x]

For the basis (m, r) the proof is done in an analogous way. �

3.1.2 A procedure to isolate real roots

To isolate real roots we use the theory of Bernstein coefficients which was introduced
in the previous subsection.
The main idea of the algorithm is to shorten the intervals (a, b) with the aid of the
Bernstein coefficients such that these intervals contain exactly one zero of the given
polynomial f .

Algorithm 3.2 (Real root Isolation)
proc isolset(f)

INPUT : a polynomial f ∈ Q[x]

OUTPUT: a set L of intervals (a,b) s.t. f has exactly one zero in (a, b)

BEGIN

Set g = RealPoly(f)

Compute M = length(g) as in Chapter 2 [note that all real roots of f are in
(−M, M)]

Compute b(g,−M, M), the Bernstein coefficients in the basis −M, M as ex-
plained in Proposition 3.7

Initialize: POS = {b(g, l, r)} and L the empty list

While POS 6= ∅

Remove an element b(g, l, r) from POS

if Var(b(g, l, r)) = 1, then L := L ∪ {(l, r)}

if Var(b(g, l, r)) > 1

Compute b(g, l, m) and b(g,m, r) as described in Algorithm 3.1 for
m = l+r

2

If g(m) = 0 then
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3 The general univariate case

Compute via division by 10 an ε, starting with ε = 0.1 s.t.
sturm(g,m− ε, m + ε) = 11

L := L ∪ {(m− ε, m + ε)}

Compute b(g, l, m− ε) and b(g,m+ ε, r) with the aid of Algorithm
3.1

POS := POS ∪ {b(g, l, m− ε), b(g,m + ε, r)}

else POS := POS ∪ {b(g, l, m), b(g,m, r)}

END

As an example for the computation of this algorithm see the following:

Example 3.15
Let us again consider f = x3 + 2x2 − x− 2 from the examples 3.8 and 3.13. The first
2 steps are clear:

1. length(f) = 1 + 2 + 1 + 2 = 6

2. POS = {b(f,−6, 6)} = {(−140, 192,−244.280)}

3. Delete (−140, 192,−244, 280) from POS.

4. Var(−140, 192,−244, 280) = 2 6= 1 hence

POS = {b(f,−6, 0), b(f, 0, 6)} Ex. 3.13
= {(−140, 26, 0,−2), (−2,−4, 18, 280)}

L = ∅

5. Delete (−140, 26, 0,−2) from POS.

6. Var(−140, 26, 0,−2) = 2 hence

POS : = POS ∪ {b(f,−6,−3), b(f,−3.0)}
Ex. 3.13

= {(−140,−57,−22,−8), (−8, 6,−1,−2), (−2,−4, 18, 280)}
L = ∅

1In all my tests this path of the algorithm wasn’t touched, as almost all polynomials have integral
or irrational zeros. This was the reason why I didn’t start with 2n such that 2n > length(f), as
in [BPR03], in the computations.
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3.1 How to compute an isolating set of a univariate polynomial f ∈ Q[x]

7. Delete (−140,−57,−22,−8) from POS.

8. Var(−140,−57,−22,−8) = 0 < 2

9. Delete (−8, 6,−1,−2) from POS.

10. Var(−8, 6,−1,−2) = 3 > 1 hence

POS : = POS ∪ {b(f,−3,−3

2
), b(f,−3

2
.0)}

= {(−8, 1,
7

4
,
9

8
), (

9

8
,
1

2
,−3

2
,−2), (−2,−4, 18, 280)}

L = ∅

11. Delete (−8, 1, 7
4
, 9

8
) from POS.

12. Var(−8, 1, 7
4
, 9

8
) = 1 hence

POS := POS ∪ {b(f,−3,−3

2
), b(f,−3

2
.0)} = {(9

8
,
1

2
,−3

2
,−2), (−2,−4, 18, 280)}

L := L ∪ {(−3,−3

2
)} = {(−3,−3

2
)}

13. Delete (9
8
, 1

2
,−3

2
,−2) from POS.

14. Var(9
8
, 1

2
,−3

2
,−2) = 1 hence

POS := {(−2,−4, 18, 280)}

L := L ∪ {(−3

2
, 0)} = {(−3,−3

2
), (−3

2
, 0)}

15. Delete (−2,−4, 18, 280) from POS.

16. Var(−2,−4, 18, 280) = 1 hence

POS = ∅

L : = L ∪ {(0, 6)} = {(−3,−3

2
), (−3

2
, 0), (0, 6)}

Proposition 3.16
Algorithm 3.2 terminates and the list L is the correct output
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Proof
The termination of the algorithm follows from Proposition 3.12, as Var(b(g,−M, M))
is a finite natural number. Since g and f have the same real roots, the correctness
follows from Proposition 3.12 and Corollary 3.11. �

Now it is not complicated to get an isolating set for f from the given list L.

Corollary 3.17
To get an isolating set for the polynomial f we compute the list L from Algorithm 3.2
sort it by magnitude and delete all duplicates.

Proof
Clear, since every interval in L contains exactly one root of f . �

3.2 An algorithm for the decision problem

In this section I give an algorithm to solve the decision problem of positive semi-
definiteness. The whole algorithm is explained in detail in the article of Zeng & Zeng
(see [GX04]). The most important theorem for the algorithm is:

Theorem 3.18
Let f be a polynomial in Q[x1, . . . , xn] with n ≥ 2. Then a non-zero univariate poly-
nomial p ∈ Q[xn] can be computed effectively such that for every isolating set Γ of p,
f(x1, . . . , xn) ≥ 0 in Rn iff f(x1, . . . , xn−1, a) ≥ 0 for every a ∈ Γ.

According this theorem, the algorithm to decide whether a polynomial is positive semi-
definite, i.e. not negative on Rn, is a recursion in the number of variables n. This
recursion is simply done via the computation of a new polynomial p ∈ Q[xn] and one
of its isolating sets Γ.
Thus let me first of all state the conditions for a univariate polynomial to be positive
semi-definite.

Proposition 3.19
Let f ∈ R[x] be a polynomial and g the polynomial obtained by deleting even fac-
tors in the decomposition of f into irreducible factors. Then the following results are
equivalent:

1. f is indefinite on R

2. f has a root of odd multiplicity in R

3. g has a root α in R
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3.2 An algorithm for the decision problem

i.e. if the leading coefficient of f is positive and g has no real root, then f is positive
semi-definite.

Proof
1 =⇒ 3: Set h = f

g
. Then h is the square of a polynomial h, hence h is positive

semi-definite. As f is indefinite there exists a, b ∈ R such that f(a) · f(b) < 0.
Let wlog a < b. Now h(a) and h(b) are both non-negative. Thus we get that
g(a) · g(b) < 0, as g is continuous, g has a zero in (a, b) ⊂ R.

3 =⇒ 2: As every root of g has an odd multiplicity, the root α of g has odd multi-
plicity, too. Now it does not matter whether α is a zero of h, as this zero would
only count in an even multiplicity as h = h

2. Hence α is a zero of f with odd
multiplicity.

2 =⇒ 1: Is clear as f is continuous and α is a root of odd multiplicity. Hence there
exists an interval [a, b] in which f has a sign change, i.e. f is indefinite. �

3.2.1 How to find the polynomial p in Q[xn]

This subsection only describes the main definitions and some shorter proofs on how
to find the polynomial p from Theorem 3.18. From now on let the ordering of
Q[x1, . . . , xn] be a lexicographical ordering, such that x1 < x2 < . . . < xn.

Definition 3.20 (leading variable and the pseudo-coefficient)
Let f ∈ Q[x1, . . . , xn]. The leading variable of f (short lvar(f)) is the largest variable
in f , i.e. if

f = as(x1, . . . , xk−1)x
s
k + as−1(x1, . . . , xk−1)x

s−1
k + . . . + a0(x1, . . . , xk−1),

as ∈ Q[x1, . . . , xk−1] \ {0}, for a k ≤ n, then lvar(f) = xk and the pseudo leading
coefficient of f is ini(f) = as(x1, . . . , xk−1).

Definition 3.21 (Pseudo-remainder)
Let f, g ∈ Q[x1, . . . , xn] such that lvar(g) ≤ lvar(f) = xk. The unique remainder
prem(g, f) obtained by pseudo-division of f by g in (Q[x1, . . . , xk−1])[xk] is called the
pseudo remainder of f and g. A polynomial g is called reduced w.r.t. f if prem(g, f) =
g.

Remark 3.22
Note that deglvar(f)(prem(g, f)) < deglvar(f)(f).

Definition 3.23 (Triangular sets)
a) A set T = {f1, ..., fr} ⊂ Q[x1, . . . , xn] is called triangular if lvar(f1) < ... <

lvar(fr). Moreover, let U ⊂ T . Then (T, U) is called a triangular system if T is a
triangular set such that ini(T ) does not vanish on V (T ) \ V (U)(=: V (T \ U)).
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3 The general univariate case

b) T is called irreducible if for every i there are no di,f ′i ,f ′′i such that

lvar(di) < lvar(fi) = lvar(f ′i) = lvar(f ′′i ),

0 6∈ prem({di, ini(f ′i), ini(f ′′i )}, {f1, ..., fi−1}),

prem(difi − f ′if
′′
i , {f1, ..., fi−1}) = 0.

Furthermore, (T, U) is called irreducible if T is irreducible.

The main result is the following theorem:

Theorem 3.24
Let G = {g1, ..., gs} ⊂ Q[x1, . . . , xn], then there are irreducible triangular sets T1, ..., Tl

such that V (G) =
⋃l

i=1(V (Ti \Ii)) where Ii = {ini(f) | f ∈ Ti}. Such a set {T1, ..., Tl}
is called an irreducible characteristic series of the ideal 〈G〉.

The characteristic series of an ideal I can be computed in Singular by the command
char_series.

Example 3.25
1. ring R= 0,(x,y,z,u),dp;

ideal i=-3zu+y2-2x+2,
-3x2u-4yz-6xz+2y2+3xy,
-3z2u-xu+y2z+y;

print(char_series(i));
==> _[1,1],3x2z-y2+2yz,3x2u-3xy-2y2+2yu,
==> x, -y+2z, -2y2+3yu-4

The method to compute the characteristic sets of an ideal I is called Wu’s Method or
the Wu-Ritt algorithm in many books or articles on Computer Algebra.
To finish, I only state the algorithm for the decision problem and give examples for
binary polynomials. For the detailed proofs see [GX04].

Algorithm 3.3 (Decision for semi-definiteness)
proc decision(f)
INPUT : f ∈ Q[x1, . . . , xn] a multivariate polynomial with positive leading coefficient
OUTPUT: 1, if f is positive semi-definite else 0
BEGIN
If (n=1) decide by Proposition 3.19 whether f is positive semi-definite.

Return 1 if it is and 0 else.
IF (n>1)
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Compute the characteristic sets C1, . . . , Cr of
I = 〈f + t, ∂f

∂xi
: i = 1, . . . , n− 1〉

in Q[t, x1, . . . , xn] w.r.t. the lexicographical ordering t < xn < {x1, . . . , xn−1} with
the aid of char_series.
The first polynomial fi in every Ci is in Q[t, xn]. Set Φ =

∏r
i=1 fi.

e(xn) := RealPoly(Φ(0, xn)), i.e. e is the real part of the trailing coefficient of Φ
in (Q[xn])[t]
For every tuple (j1, . . . , jk) of integers with 1 ≤ j1 < . . . < jk ≤ n− 1 compute the
characteristic sets D1, . . . , Dm(j1,...,jk) for

I(j1, . . . , jk) := 〈f + t, ∂f
∂xi

: i ∈ {1, . . . , n− 1} \ {j1, . . . , jk}〉.
The first polynomial fi in every Di is in Q[t, xj1 , . . . , xjk

, xn]. Set
Φj1,...,jk

=
∏m(j1,...,jk)

i=1 fi.
Let uj1,...,jk

(t, xn) be the leading coefficient of Φj1,...,jk
in Q(t, xn)[xj1 , . . . , xjk

] w.r.t.
the elimination ordering xj1 < . . . < xjk

.
Set ej1,...,jk

:= RealPoly(uj1,...,jk
(0, xn)).

Set p := e ·
∏

λ⊂{1,2,...,n−1} eλ

Determine an isolating set Γ of p by the aid of Algorithm 3.2
Test for every a ∈ Γ if fa := f(x1, . . . , xn−1, a) is positive semi-definite by recursion.
If every such fa is positive semi-definite use Theorem 3.18 and return 1 else return 0.

END

Now let us consider some examples.

Example 3.26
Let f = 2x6 + 3x4y2 + y6 + x2y2 − 6y + 5.

Step 1: a) I := 〈t + 2x6 + 3x4y2 + y6 + x2y2 − 6y + 5, 12y2x3 + 12x5 + 2y2x〉
Singular computes the following characteristic sets
C1 = {216y12−108y10−9y8 +324ty6−1944y7 +1628y6−108ty4 +648y5−
540y4 + 108t2 − 1296ty + 3888y2 + 1080t − 6480y + 2700,−6y6 + 6y4x2 +
y4 − 4y2x2 − 6t + 36y − 30},
C2 = {81t2 + 846t + 265, 486ty + 4383t− 23760y + 20945, 3x2 + 1},
C3 = {y6 + t− 6y + 5, x}

b) Φ :=17496t2y18 + 182736ty18 − 8748t2y16 + 57240y18 − 91368ty16 − 729t2y14

− 28620y16 + 43740t3y12 − 262440t2y13 − 7614ty14 + 676188t2y12

− 2741040ty13 − 2385y14 − 17496t3y10 + 104976t2y11 + 2434068ty12

− 858600y13 − 270216t2y10 + 1096416ty11 + 717620y12 − 729t3y8

+ 4374t2y9 − 970920ty10 + 343440y11 + 34992t4y6 − 419904t3y7

+ 1248453t2y8 + 45684ty9 − 286200y10 + 716040t3y6 − 6489072t2y7

+ 13116537ty8 + 14310y9 − 8748t4y4 + 104976t3y5 + 4339080t2y6

− 23342688ty7 + 4109355y8 − 178848t3y4 + 1621296t2y5 + 7028312ty6
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− 6881520y7 − 1161000t2y4 + 5825520ty5 + 1842280y6 + 8748t5

− 157464t4y + 944784t3y2 − 1889568t2y3 − 2570400ty4 + 1717200y5

+ 222588t4 − 3219264t3y + 14591664t2y2 − 19735488ty3 − 715500y4

+ 2055240t3 − 20898000t2y + 52429680ty2 − 6181920y3 + 8375400t2

− 46267200ty + 15454800y2 + 13567500t− 12879000y + 3577500

c) e :=RealPoly(57240y18 − 28620y16 − 2385y14 − 858600y13 + 717620y12

+ 343440y11 − 286200y10 + 14310y9 + 4109355y8 − 6881520y7

+ 1842280y6 + 1717200y5 − 715500y4 − 6181920y3 + 15454800y2

− 12879000y + 3577500)

=216y13 − 216y12 − 108y11 + 108y10 − 9y9 − 1935y8 + 3572y7 − 980y6

− 1188y5 + 540y4 + 3888y3 − 10368y2 + 9180y − 2700

Step 2: As x = x1, y = x2 the only tuple (j1, . . . , jk) is (1) so we have to compute the
characteristic sets of Jac = 〈t + 2x6 + 3x4y2 + y6 + x2y2 − 6y + 5〉 w.r.t. the
ordering t < y < x.

a) Singular computes the characteristic sets:
D1 = {t + 2x6 + 3x4y2 + y6 + x2y2 − 6y + 5}

b) Φ1 = t + 2x6 + 3x4y2 + y6 + x2y2 − 6y + 5

c) u1 = 2 is the leading coefficient of y6 + 3y2x4 + 2x6 + y2x2 + t− 6y + 5 in
Q(t, y)[x]

d) e(1) = 1

Step 3: p := e · e1 = 216y13 − 216y12 − 108y11 + 108y10 − 9y9 − 1935y8 + 3572y7 −
980y6 − 1188y5 + 540y4 + 3888y3 − 10368y2 + 9180y − 2700

Step 4: The isolating set computed by the algorithm isolset, which I implemented in
Singular, is:

Γ =

{
547

864
,
547

576
,
7111

6912
,
3829

3456

}

Step 5: • f1 := f(x, 547
864

) = 2x6 + 299209
248832

x4 + 299209
746496

x2 + 526552254943631641
415989582513831936

f1 is prime and has no real root. Hence it is positive semi-definite.

• f2 := f(x, 547
576

) = 2x6 + 299209
110592

x4 + 299209
331776

x2 + 1298833469905177
36520347436056576

f2 is prime and has no real root. Hence it is positive semi-definite.
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• f3 := f(x, 7111
6912

) = 2x6 + 50566321
15925248

x4 + 50566321
47775744

x2 + 1409036562626545309969
109049173118505959030784

f3 is prime and has no real root. Hence it is positive semi-definite.

• f4 := f(x, 3829
3456

) = 2x6 + 14661241
3981312

x4 + 14661241
11943936

x2 + 344180307451240679977
1703893329976655609856

f4 is prime and has no real root. Hence it is positive semi-definite.

Now we change f to 2x6− 3x4y2 + y6 + x2y2− 6y + 5, i.e. replace +3x4y2 by −3x4y2.
Our next example will show that this polynomial is indefinite.

Example 3.27
Step 1. a) I := 〈t + y6 − 3y2x4 + y2x2 − 6y + 2x6 + 5,−12y2x3 + 2y2x + 12x5〉

Singular computes the following characteristic series:
C1 = {108t2 + 108ty6 + 108ty4 − 1296ty + 1080t + 108y10 − 9y8 − 648y7 +
548y6 − 648y5 + 540y4 + 3888y2 − 6480y + 2700,−6t− 6y6 + 6y4x2 − y4 −
4y2x2 + 36y − 30, 0},
C2 = {729t2+7830t+3529, 21870ty+118773t−595188y+550375, 3x2−1},
C3 = {t + y6 − 6y + 5, x, 0}

b) Φ :=78732t5 + 157464t4y6 + 78732t4y4 − 1417176t4y + 2026620t4

+ 78732t3y12 + 157464t3y10 − 6561t3y8 − 1889568t3y7 + 3271752t3y6

− 944784t3y5 + 1632960t3y4 + 8503056t3y2 − 29393280t3y + 18970632t3

+ 78732t2y16 − 6561t2y14 − 472392t2y13 + 1245132t2y12 − 944784t2y11

+ 2478600t2y10 + 39366t2y9 + 5565429t2y8 − 29778192t2y7

+ 24537816t2y6 − 14871600t2y5 + 10805832t2y4 − 17006112t2y3

+ 133844400t2y2 − 194504976t2y + 78981480t2 + 845640ty16 − 70470ty14

− 5073840ty13 + 4671972ty12 − 10147680ty11 + 9218664ty10 + 422820ty9

+ 60501969ty8 − 110999808ty7 + 80689112ty6 − 55311984ty5

+ 24952320ty4 − 182658240ty3 + 497807856ty2 − 449141760ty

+ 134289900t + 381132y16 − 31761y14 − 2286792y13 + 1933892y12

− 4573584y11 + 3811320y10 + 190566y9 + 27282699y8 − 45905232y7

+ 32918512y6 − 22867920y5 + 9528300y4 − 82324512y3 + 205811280y2

− 171509400y + 47641500

c) e :=RealPoly(381132y16 − 31761y14 − 2286792y13 + 1933892y12 − 4573584y11

+ 3811320y10 + 190566y9 + 27282699y8 − 45905232y7 + 32918512y6

− 22867920y5 + 9528300y4 − 82324512y3 + 205811280y2

− 171509400y + 47641500)

=108y11 − 108y10 − 9y9 − 639y8 + 1196y7 − 1196y6 + 1188y5 − 540y4

+ 3888y3 − 10368y2 + 9180y − 2700
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Step 2. As x = x1, y = x2 the only tuple (j1, . . . , jk) is (1) so we have to compute the
characteristic sets of Jac = 〈t + 2x6 − 3x4y2 + y6 + x2y2 − 6y + 5〉 w.r.t. the
ordering t < y < x.

a) Singular computes the following characteristic sets:
D1 = {t + y6 − 3y2x4 + y2x2 − 6y + 2x6 + 5}

b) Φ1 = t + y6 − 3y2x4 + y2x2 − 6y + 2x6 + 5

c) u1 = 2 is the leading coefficient of y6 − 3y2x4 + 2x6 + y2x2 + t− 6y + 5 in
Q(t, y)[x]

d) e(1) = 1

Step 3. p := e · e1 = 108y11 − 108y10 − 9y9 − 639y8 + 1196y7 − 1196y6 + 1188y5 −
540y4 + 3888y3 − 10368y2 + 9180y − 2700

Step 4. The isolating set of p computed by isolset is:

Γ =

{
1945

2304
,
13615

13824
,
1945

1728
,
1945

864

}

Step 5. • f1 := f(x, 1945
2304

) = 2x6 − 3783025
1769472

x4 + 3783025
5308416

x2 + 44401163709486387025
149587343098087735296

f1 is prime and has no real root, thus f1 is positive semi-definite.

• f2 = f(x, 13615
13824

) = 2x6 − 185368225
63700992

x4 + 185368225
191102976

x2 + 23451757301096416126945
6979147079584381377970176

f2 is prime but it has 4 real roots of odd multiplicity and hence it is
indefinite. The command solve computes all roots of the polynomial
f2 ∈ Q[x] in C

>poly f=2x6-185368225/63700992x4+185368225/191102976x2
+23451757301096416126945/6979147079584381377970176;
> LIB "solve.lib";
> solve(f);
[1]:

-0.96619394
[2]:

-0.72448954
[3]:

0.72448954
[4]:

0.96619394
[5]:
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(-i*0.058556498)
[6]:

(i*0.058556498)

As we found an indefinite polynomial we could stop our example and conclude that
the polynomial is indefinite.

3.3 The generalized procedure RealPoly

Let me first recall the algorithm for the real polynomial of a univariate polynomial
which I introduced in Chapter 2.

proc RealPoly(poly f)
"USAGE: RealPoly(f); poly f;
RETURN: poly f, where f is the real part of the input f
EXAMPLE: example RealPoly; shows an example"
{
if (f==1) {return(f);};
ideal j=factorize(f,1);//for getting the square-free factorization
poly erg=1;
for (int i=1;i<=size(j);i=i+1)
{
if (is_real(j[i])==1) {erg=erg*j[i];};
//we only need real primes

}
return(erg);

}

This algorithm can simply be extended to polynomials over Q(y1, y2, . . . , ym)[x] with
the aid of Lemma 3.1 and the resulting Corollary 3.2. The only procedure we have to
extend is the auxiliary procedure is_real. It decides for a prime polynomial whether
it is real or not.

The algorithm for the decision problem that I mentioned in the last subsection decides
when a polynomial is positive semi-definite or not. The prime polynomials which
we get in the factorization of a polynomial always have a positive leading coefficient.
Hence they aren’t negative semi-definite. So if these polynomials are not positive semi-
definite, then they are indefinite and thus real. For a prime polynomial p is_real(p)
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3 The general univariate case

is 1 iff decision(p) is 0. So 1−decision is the result for the answer of the question,
if a prime polynomial is real.

To get faster computations we only use the decision algorithm if there exists no ring
variable in Q[y1, y2, . . . , ym, x] such that the degree of p in this variable is odd. This
is just a simple consequence of the fundamental theorem of algebra. Let’s fix it as a
lemma:

Lemma 3.28
Let f ∈ Q[x1, . . . , xn] be a polynomial. If there exists a variable xi such that the degree
of f in xi (degxi

f) is odd then f is indefinite over R.

Proof
Without loss of generality, let degxn

f = k and k odd. Written in Q(x1, . . . , xn−1)[xn]
f has the form

f = fk(x1, . . . , xn−1)x
k
n + . . . + f1(x1, . . . , xn−1)xn + f0(x1, . . . , xn−1)

for a non-zero polynomial fk ∈ Q[x1, . . . , xn−1]. Let (a1, . . . , an−1) ∈ Rn−1 be a point
s.t. fk(a1, . . . , an−1) 6= 0.

Now f(a1, . . . , an−1, xn) is a univariate polynomial of odd degree in R[xn]. But these
polynomials are indefinite as they have a zero by the fundamental theorem of algebra.�

This leads us directly to the extension of the is_real procedure for the case that f
is not univariate. This short extension is:

if (isuniv(f)==0)
{
for (i=1;i<=nvars(r);i++)
{

d=size(coeffs(f,var(i)))+1;
if ((d mod 2)==1)
{

return(1);
}

}
d=1-decision(f);
return(d);

}

To finish this chapter we consider some examples.

48



3.3 The generalized procedure RealPoly

Example 3.29
1. f = 2x6 + 3x4y2 + y6 + x2y2 − 6y + 5 from Example 3.26 is prime and positive

semi-definite, thus the RealPoly of f is 1.

2. f = 2x6− 3x4y2 + y6 +x2y2− 6y +5 from Example 3.27 is prime and indefinite,
thus the RealPoly of f is f itself.

3. Let

f =x8y2z4 − 2x7y3z2 + x6y4z4 + x6y4 + x6y2z4 + 2x6yz5 − 2x5y5z2−
2x5y3z2 − 4x5y2z3 + x4y6 + x4y4 + 2x4y3z5 + 2x4y3z + 2x4yz5 + x4z6−
4x3y4z3 − 4x3y2z3 − 2x3yz4 + 2x2y5z + 2x2y3z + x2y2z6 + x2y2z2+

x2z6 − 2xy3z4 − 2xyz4 + y4z2 + y2z2 ∈ Q[x, y, z].

Factorizing yields that

f = (x2y + z)2 · (xz2 − y)2 · (x2 + y2 + 1) = p2
1 · p2

2 · p3.

From lemma 3.28 we know that p1 and p2 are real. As x2+y2+1 is positive semi-
definite the real polynomial computed from f is g = p1·p2 = x3yz2−x2y2+xz3−yz
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4 The zero-dimensional case

The aim of this Chapter is to introduce an algorithm to compute the real radical
of a zero-dimensional ideal I in the Q-algebra Q(y1, y2, . . . , ym)[x1, . . . , xn]. Thus I
preparatorilly recall the concept of an ideal being in general position.
Applying this notion, there is a natural reduction from the zero-dimensional case to
the univariate case.
This section will only be short without proofs. I only cite the definition and a useful
theorem. For more information see the book by Greuel and Pfister ([GP02] Chapter
4.2 on primary decomposition).

4.1 General position and the theory of primary
decomposition

Definition 4.1
(a) A maximal ideal M � ·K[x1, . . . , xn] is called in general position w.r.t. the lexico-

graphical ordering with x1 > x2 > . . . > xn if there exist polynomials g1, g2, . . . , gn ∈
K[xn] with

M = 〈x1 − g1(xn), x2 − g2(xn), . . . , xn−1 − gn−1(xn), gn(xn)〉.

(b) A zero-dimensional ideal I � K[x1, . . . , xn] is called in general position w.r.t. the
lexicographical ordering with x1 > x2 > . . . > xn, if all associated primes P1, . . . Pk

are in general position and if

Pi ∩K[xn] 6= Pj ∩K[xn]

for all i 6= j.

The following theorem guarantees the existence of a coordinate change into general
position for an arbitrary zero-dimensional ideal in K[x1, . . . , xn]
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Proposition 4.2
Let K be a field of characteristic 0, and let I � K[x1, . . . , xn] be a zero-dimensional
ideal. Then there exists a non-empty, Zariski open subset U ⊂ Kn−1 such that for
all a = (a1, . . . , an−1) ∈ U , the coordinate change ϕa : K[x1, . . . , xn] → K[x1, . . . , xn]
defined by

• ϕa(xi) = xi for i < n, and

• ϕa(xn) = xn +
n−1∑
i=1

aixi

has the property that ϕa(I) is in general position with respect to the lexicographical
ordering.

The most important proposition of the theory of primary decomposition which explains
the need for the notion of general position is the following:

Proposition 4.3
Let I � K[x1, . . . , xn] be a zero-dimensional ideal. Let 〈g〉 = I ∩K[xn], g = gv1

1 · · · gvs
s ,

gi monic and prime with gi 6= gj for i 6= j. Then

1. I =
⋂s

i=1〈I, gvi
i 〉.

If I is in general position w.r.t. the lexicographical ordering with x1 > x2 > . . . xn,
then

2. 〈I, gvi
i 〉 is primary for all i.

So the idea of primary decomposition is:

1. use a coordinate change ϕa : K[x1, . . . , xn] → K[x1, . . . , xn] to get into general
position

2. get the primary decomposition of ϕa(I) from Proposition 4.3

3. invert the coordinate change to get the primary decomposition of our original I.
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4.2 The theory of zero-dimensional radical computation

4.2 The theory of zero-dimensional radical
computation

To explain the main idea used in the algorithm for the zero-dimensional real radical
via reduction to the univariate case consider the following example. For the rest of
this chapter let F := Q(y1, y2, . . . , ym) as in Chapter 3.

Example 4.4
Let I = 〈x1−g1(xn), x2−g2(xn), . . . , xn−1−gn−1(xn), gn(xn)〉�F [x1, . . . , xn] be given.
If gn is the real part of gn obtained by the procedure RealPoly from the last two chapters
then the real radical of I is:

re
√

I = 〈x1 − g1(xn), x2 − g2(xn), . . . , xn−1 − gn−1(xn), gn(xn)〉

Proof
Let gn =

∏r
i=1 pαi

i be the factorization of gn in F [xn]. Then every ideal 〈x1 − g1, x2 −
g2, . . . , xn−1 − gn−1, pi〉 is maximal because of the isomorphism

F [x1, . . . , xn]/〈x1 − g1, x2 − g2, . . . , xn−1 − gn−1, pi〉 ∼= F [xn]/〈pi〉.

As pi is prime we conclude that F [x1, . . . , xn]/〈x1 − g1, x2 − g2, . . . , xn−1 − gn−1, pi〉 is
a field.
Now 〈x1− g1, x2− g2, . . . , xn−1− gn−1, pi〉 is real iff pi is real because F [xn]/〈pi〉 is real
iff pi is real by Proposition B.7. Hence

re
√

I
cor.B.6

=
⋂

M∈Min(I) real

M

=
⋂

pi is real

〈x1 − g1, x2 − g2, . . . , xn−1 − gn−1, pi〉

= 〈x1 − g1, x2 − g2, . . . , xn−1 − gn−1,
∏

pi is real

pi〉

= 〈x1 − g1(xn), x2 − g2(xn), . . . , xn−1 − gn−1(xn), gn(xn)〉 �

The main theorem for the zero-dimensional computation in the article of Becker and
Neuhaus is the Shape lemma which gives a detailed information on the shape of the
reduced Groebner basis of a radical ideal satisfying the property of being in general
position in some kind of way. So that we can obtain the position of an ideal given in
the example above.
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Lemma 4.5 (Shape)
Let I be a zero-dimensional radical ideal in F [x1, . . . , xn] with all d roots in F

n having
distinct xn coordinates. Then the reduced Groebner basis of I in the lexicographical
ordering has the shape

G = {x1 − g1(xn), x2 − g2(xn), . . . , xn−1 − gn−1(xn−1), gn(xn)},

where gn is a square-free polynomial of degree d and the gi i < n are polynomials of
degree d− 1.

Proof
First of all we will see that there exist g1, . . . , gn−1 ∈ F [xn] of degree d − 1 and a
square-free gn ∈ F [xn] of degree d such that

I = 〈x1 − g1(xn), x2 − g2(xn), . . . , xn−1 − gn−1(xn), gn(xn)〉.

Afterwards I show that G = {x1 − g1(xn), x2 − g2(xn), . . . , xn−1 − gn−1(xn), gn(xn)} is
a reduced Groebner basis.

Step 1: Existence of g1, . . . , gn:
From Hilbert’s Nullstellensatz we know that IF (VF (I)) =

√
I = I and VF (I)

is finite. Let a1, . . . , ad be the d distinct xn coordinates, i.e. the projection of
VF (I) to the xn-axis, in F .

Set gn = (xn − a1) · (xn − a2) · · · (xn − ad) and let 〈r〉 = I ∩ F [xn] � F [xn].
Wlog we can assume, that r is monic.

Claim: r = gn and hence gn ∈ F [xn]

Proof:
Using Hilbert’s Nullstellensatz over F we get:

〈r〉 = IF (VF (r)) = IF ({a1, a2, . . . , ad})
= 〈(xn − a1) · (xn − a2) · · · (xn − ad)〉 = 〈gn〉.

Hence gn and r are associated in F [xn]. As both are monic, r = gn in
F [xn], i.e. they are equal in F [xn] too.

From the assumption, we know that all roots of I have distinct xn coordinates
so we take for each xj with j < n the unique xj coordinates bij ∈ F for all ai.
Via Lagrange interpolation we can get polynomials gj of degree d−1 satisfying
the following conditions:

gj(ai) = bij ∀i, j with j < n

gj = gjd−1
xd−1

n + gjd−2
xd−2

n + . . . gj1xn + gj0 ∈ F [xn].
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Recall that these gj have the form

gj(xn) =
d∑

i=1

bij ·
∏
r 6=i

xn − ar

ai − ar

.

Hence the radical ideal I = 〈x1−g1(xn), x2−g2(xn), . . . , xn−1−gn−1(xn), gn(xn)〉
defines the zero-set of I in F by definition. If we can show now that every gj

is already in F [xn] we have I = I � F [x1, . . . , xn] which we assumed.

Let j < n be arbitrary and 〈rj〉 := I ∩ F [xj] = I ∩ F [xj] the univariate part
of I in the variable xi. Now rj has the form rj = rjd

xd
j + . . . rj1xj + rj0 .

Using the form of I and the elimination property we know that there exists a
polynomial k ∈ F [xn] such that

rj(gj) = k · gn

If we now compare the coefficients of gi inductively in some way, we get that
they are all in F . 1

Thus gj ∈ F [xn] and I = I

Step 2: Reduced Groebner basis:
This is much easier than the first statement. From the form of I it is clear
that L(I) = 〈x1, . . . , xn−1, x

d
n〉, because all gj have a degree less than d. So G

is a Groebner basis by the product criterion. Also all leading monomials of G
are co-prime and thus interreduced. So the Groebner basis G is reduced. �

A naive idea for an algorithm could be:

1. Compute the radical
√

I of the given ideal I.

2. Test if
√

I fulfills the shape condition with respect to one variable xi and compute
a reduced Groebner basis of re

√
I w.r.t. a lexicographical ordering with lowest

variable xi. If not use a random change into general position until this condition
is fulfilled.

3. Compute the real radical of
√

I as described in Example 4.4 and undo the coor-
dinate change.

1It would take too much time to do this in detail and as this theorem is not important for prac-
tical computations because there is a more useful generalization for maximal ideals in the next
subsection. I have just sketched that the gi are in F [xn].
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As a coordinate change into general position causes a growth of coefficients and terms
which slows the Groebner bases computations down it is important to avoid this change
as often as possible. Therefore I give some heuristics, i.e. some kinds of special cases
in which we do not have to apply a random coordinate change.
The idea for the algorithm due to Becker and Neuhaus ([BN98]) has been presented
in Example 4.4 and Lemma 4.5. In the rest of the chapter, I will present my own
algorithm.

As in Singular the primary decomposition of zero-dimensional ideal is vary efficient
in the average case we can use this algorithm as a black box. The main idea of the
primary decomposition due to Gianni/Trager/Zacharias (the command is primdecGTZ)
was presented in the prior section. Hence we can assume the maximality of all ideals
we are dealing with. The next section presents some heuristics which I found by testing
the property of being real for maximal ideals (short realness).

4.3 How to decide whether a maximal ideal is real

For a maximal ideal there are only two possibilities – either it is real or its real radical
is the whole ring. This is the reason why getting criteria for maximal ideals is not
difficult. The main idea of this section is to find an heuristic which fulfills the following
criteria:

1. Its costs have to be lower in the average case than the costs that a random
coordinate change would cost.

2. The decision of realness must be an easy test, i.e. it shouldn’t cost too many
operations.

3. Our heuristic must cancel out maximal ideals M which are not real as early as
possible in the computations.

Here are some properties of maximal ideals that I found during the work on my
Diplomarbeit. For the definition of orderings and real closed I refer to the Appendix
Chapter A.

One obvious property of real maximal ideals is the following corollary.

Corollary 4.6
Let M � ·F [x1, . . . , xn] be maximal and f1, . . . , fn be the univariate polynomials such
that 〈fi〉 = M ∩ F [xi]. If M is real then every fi is real too.
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4.3 How to decide whether a maximal ideal is real

Proof
First of all, we prove that every fi is prime: As fi ∈ M , one irreducible factor of
fi is in M . Suppose now that fi is not prime in F [xi]. Then fi = gh, where 1 <
deg g, deg h < deg f . As every maximal ideal is prime we obtain g ∈ M or h ∈ M .
Let wlog g ∈M . But then 〈fi〉 ( 〈g〉 ⊆M ∩ F [xi] which is a contradiction.

If now one of the fi is not real the its real part is 1. Hence 1 ∈ re
√
〈fi〉 = re

√
M ∩ F [xi]

L.1.8
=

re
√

M ∩ F [xi], so 1 ∈ re
√

M and thus M is not real. �

Another simple remark is:

Remark 4.7
If M = 〈f1, . . . fn〉 � ·Q[x1, . . . , xn] is a maximal ideal with every fi ∈ Q[xi] is real,
then M is real.

Proof
This is clear as every fi has a zero ai in the common real closed field R. Thus
(a1, . . . , an) ∈ Rn is in the real zeros of M . �

Note that this simple remark for the rational numbers is not true for an arbitrary real
field F . This remains only true if F is an ordered field. The problem for arbitrary
real fields is the following:
A polynomial fi ∈ F [xi] is real iff there there exist orderings α1, . . . , αr and the
corresponding real closures Rα1 , . . . , Rαr such that fi has zeros in every Rαi

.
But these orderings αi could occur in a way that there exists no common real closed
ground field Rα and no corresponding ordering α of F such that the polynomials fi all
have a root in Rα, which would yield that M is real. The following counter-example
for arbitrary real fields clarifies the problem:

Example 4.8
Let M = 〈x2 + 1 + t, y2 − t〉� ·Q(t)[x, y]. Then m1 = x2 + 1 + t is real in every real
closed extension Rα of Q(t) which admits an ordering α in which t < −1 (note that
we conclude that m1 is real as it is indefinite over R), m2 = y2 − t is real in every
real closed extension Rβ which admits an ordering β satisfying t > 0. Both types of
orderings, the α– and β-orderings, contradict each other.
In fact M is not real as

12 + x2 + y2 = m1 + m2 ∈M

and hence 1 ∈ re
√

M .

Analogous to the Shape Lemma, there holds a stronger property for maximal ideals
that can be tested very easily:
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4 The zero-dimensional case

Proposition 4.9
Let M � ·F [x1, . . . , xn] be a maximal ideal and G = {g1, . . . , gn} the reduced Groebner
basis of M with respect to any lexicographical ordering with smallest variable xi. If G
has the following properties:

• g1 ∈ F [xi]
2 and g1 is real.

• every gi for i = 2, . . . , n has odd degree in its leading variable (see Definition
3.20).

Then the maximal ideal M is real.

Proof
Assume for simplicity that G = {g1, . . . , gn} is a Groebner basis satisfying the prop-
erties above w.r.t. the ordering x1 < x2 < . . . < xn.
As g1 ∈ F [x1] is real there exists a real closed field R ⊃ F such that g1 has a zero
α1 ∈ R. Now g2(x2, α1) ∈ R[x2] has odd degree and thus has a zero α2 in R by the
fundamental theorem of algebra. By the same reason g3(x3, α2, α1) ∈ R[x3] has a zero
α3 ∈ R. Inductively there exists an α ∈ VRn(M).
Thus VR(M) 6= ∅ and hence, by the definition of the real zero-set of M , Vre(M) 6= ∅
(see Definition B.13). Now by the Real Nullstellensatz (cf. Theorem B.14) re

√
M =

IF (VR(M)) = IF (α) ⊂ M . As M is maximal and Vre)M =6= ∅ we conclude the
realness M . �

As a last condition to test the realness of M is:
Lemma 4.10
Let M = 〈m1, . . . ,mn〉 be a maximal ideal in F [x1, . . . , xn] written as a reduced lex-
icographical Groebner basis w.r.t to the ordering x1 < x2 < . . . < xn. IF M is real,
every generator mi is real.

Proof
Assume contrary: Thus let i be the smallest index such that mi is not real. As M is
a lexicographical Groebner basis we get the following cases:

Case 1: i = 1 then m1 ∈ F [x1] and has no real root. So

〈1〉 = re
√

m1 ⊂ re
√
〈m1, . . . ,mn〉 =

re
√

M.

Thus M is not real which is a contradiction.

Case 2: i > 0. Let R be an arbitrary real closure of (F, α) w.r.t. an ordering α of F
such that a = (a1, . . . , an) ∈ Rn is a real point of M (i.e. a ∈ Vre(M)). Then
we have the following situation:

2G is a triangular set as it is a reduced lexicographical Groebner basis, wlog we can assume that
the univariate polynomial in smallest variable in G is g1.
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4.3 How to decide whether a maximal ideal is real

• M ′ := 〈m1, . . . ,mi〉 = M ∩ F [x1, . . . , xi] � ·F [x1, . . . xi] is real since
(a1, . . . , ai) ∈ VR(M ′) ⊂ Vre(M

′).

• M ′′ := 〈m1, . . . ,mi−1〉 = M∩F [x1, . . . , xi−1]�·F [x1, . . . xi−1] is real since
(a1, . . . , ai−1) ∈ VR(M ′′) ⊂ Vre(M

′′).

As M ′ is real, the ordering α of F can be extended in k(M) = F [x1, . . . , xn]/M ,
i.e. k(M) is a formally real field (see Proposition B.7). From the first isomor-
phism theorem, we get:

F [x1, . . . , xi]/M
′ ∼= (F [x1, . . . , xi−1, xi]/M

′′)/(M ′/M ′′)

= ((F [x1, . . . , xi−1]/M
′′)[xi])/((〈mi〉+ M ′′)/M ′′).

Now as (a1, . . . , ai−1) is a (real) root of the maximal M ′′ we get that

F [x1, . . . , xi−1]/M
′′ ∼= F (a1, . . . , ai−1)

which is ordered by F (a1, . . . , ai−1) ∩R2. Hence

k(M) ∼= F (a1, . . . , ai−1)[xi]/〈mi(a1, . . . , ai−1, xi)〉

and k(M) is real. Thus the ordering F (a1, . . . , ai−1) ∩ R2 can be extended
to F (a1, . . . , ai−1, ai) ∩ R2 (as ai is a real root of mi(a1, . . . , ai−1, xi) by the
definition of a). But then mi(a1, . . . , ai−1, xi) is indefinite over R by the sign
change criterion (Theorem B.10) and thus mi(x1, . . . , xi) is indefinite over R,
too. Now we get from Remark B.12 that mi is real which contradicts the
assumption. �

Lemma 4.10 is no equivalence as we can see in the following example:
Example 4.11
Let M = 〈x3 − 2, y2 + x2 − x〉 � ·Q[x, y]. Now x3 − 2 is real since 3

√
3 is in R and

y2 + x2 − x is real by Lemma 3.1 as it is indefinite-
But M is not real as y2 + 3

√
2

2 − 3
√

2 has no real root since 3
√

2
2 − 3
√

2 > 0.

The last corollary is useful to test the realness of prime polynomials f ∈ F [x1, . . . , xn].
Corollary 4.12
Let f ∈ Q[y1, y2, . . . , ym, x1, . . . , xn] be an irreducible polynomial. Then f is real con-
sidered as polynomial in F [x1, . . . , xn] iff f considered as a polynomial in
Q[y1, y2, . . . , ym, x1, . . . , xn] is real.

Proof
⇒: As 〈f〉F [x1, . . . , xn] is real in F [x1, . . . , xn], there exists an xi such that degxi

f > 0.
Without loss of generality let xn be this xi. By Lemma 1.8 we conclude that
〈f〉F (x1, . . . , xn−1)[xn] = 〈f〉Q(y1, y2, . . . , ym, x1, . . . , xn−1)[xn] is real. Thus by
Lemma 3.1 〈f〉Q[y1, y2, . . . , ym, x1, . . . , xn] is real and hence f is real considered
over Q[x1, . . . , xn, y1, y2, . . . , ym].
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4 The zero-dimensional case

⇐: This is clear as reality commutes with localization (see Lemma 1.8). �

Combining all these conditions yields a good heuristic to decide the property of being
real for maximal ideals M . Let us first consider a large example in which it was
possible to avoid the change into general position completely.

Example 4.13
Let

I = 〈(y3 + 3y2 + y + 1)(y2 + 4y + 4)(x2 + 1),

(x2 + y)(x2 − y2)(x2 + 2xy + y2)(y2 + y + 1)〉�Q[x, y]

The primary decomposition of I yields 10 maximal ideals.

1. M1 = 〈y2 + 1, x − y〉 which is not real as y2 + 1 is not real. Hence it does not
satisfy the conditions in Proposition 4.9 and Corollary 4.6..

2. M2 = 〈y − 1, x2 + 1〉 does not satisfy the corollary 4.6 and is thus not real.

3. M3 = 〈y2 + y + 1, x2 + 1〉 does not satisfy Corollary 4.6 and is thus not real.

4. M4 = 〈y2 + 1, x + y〉 does not satisfy Corollary 4.6 and is thus not real.

5. M5 = 〈y + 2, x− 2〉 is real by Proposition 4.9 or Remark 4.7.

6. M6 = 〈y + 2, x2 − 2〉 is real by Proposition 4.9 for the ordering x < y with the
reduced Groebner basis G = {x2 − 2, y + 2}.

7. M7 = 〈y + 2, x + 2〉 is real by Proposition 4.9 or Remark 4.7.

8. M8 = 〈y3 +3y2 +y +1, x+y〉 is real by Proposition 4.9 w.r.t. the ordering y < x
under which M is a reduced Groebner bases.

9. M9 = 〈y3 + 3y2 + y + 1, x2 + y〉. Here it is not obvious to see if M9 is real or
not. So we have to compute the Groebner bases w.r.t. both orderings x < y and
y < x.
The Groebner basis w.r.t. to the lexicographical ordering x < y of M9 is

GM = 〈x6 − 3x4 + x2 − 1, y + x2〉.

First we have to test if x6− 3x4 + x2− 1 is real. We know that x6− 3x4 + x2− 1
is prime and after applying the RealPoly Procedure introduced in the last two
chapters we get that x6 − 3x4 + x2 − 1 is real. Now we know that M9 is real by
Proposition 4.9 w.r.t. to the ordering x < y.
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4.3 How to decide whether a maximal ideal is real

10. M10 = 〈y3 + 3y2 + y + 1, x− y〉 is real by Proposition 4.9.

So the real radical of I is

re
√

I = M5 ∩M6 ∩M7 ∩M8 ∩M9 ∩M10

= 〈y4 + 5y3 + 7y2 + 3y + 2, x4 − x2y2 + x2y − y3〉

In the next subsection I describe a procedure using the criteria introduced above.

After giving this procedure it is easy to describe the algorithm for the zero-dimensional
case using a coordinate change into general position.

4.3.1 The procedure prepare_max

The procedure prepare_max which uses the properties I found, acts in the following
way:
It gets as input a maximal ideal M and returns a list erg = M, j, where

M =

{
re
√

M if j = 1, the change into general position can be avoided
M if j = 0, the change into general position cannot be avoided

I explain my algorithm in pseudo-code. The proof of the correctness of this algorithm
follows from the criteria I explained above. In the algorithm itself there is no need
to check Corollary 4.6 explicitly. This criterion is checked implicitly in the check of
Proposition 4.9 as we will see.

The procedure prepare_max is written as follows:

Algorithm 4.1 (An heuristic to check if a coordinate change can be avoided)
proc prepare_max(M)

INPUT : a maximal ideal M � ·F [x1, . . . , xn]

OUTPUT: a list erg = (M, j) s.t.:

M =

{
re
√

M if j = 1, the change into general position can be avoided
M if j = 0, the change into general position can′t be avoided

BEGIN

Initialize P := {λ : λ is a permutation of the variables {x1, . . . , xn}}
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4 The zero-dimensional case

while (P 6= ∅) do {

Choose a λ = (xj1 , xj2 , . . . , xjn) ∈ P

P := P \ {λ}

Compute the lexicographical Groebner basis Mλ = {f1, f2, . . . , fn} of M w.r.t.
the ordering xj1 < xj2 < . . . < xjn. Now f1 is univariate in the variable
xj1.

Let f1 := RealPoly(f1) the real part of f1. As fi is prime there are two possi-
bilities f1 = 1 or f1 = f1.

if (f1 = 1)

{

erg := 〈1〉, 1

return(erg);

}

According to Proposition 4.9 search the first position k ≥ 2 such that mk has
even degree in xjk

. Set k = n + 1 if there exists none.2

if (k > n)

{

erg := M, 1; (Correctness is clear from Prop. 4.9)

return(erg);

}

According to Lemma 4.10 search from. position (k+1) in Mλ, the first non-real
generator mi.

If there exists a position i ≤ n set erg = 〈1〉, 1 and return erg.

}
2This is done via my auxiliary procedure search_first.
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4.3 How to decide whether a maximal ideal is real

If F is non parametric, i.e. F = Q and every generator of M is univariate use
Remark 4.7 and return erg := M, 1.

erg := M, 0;

return(erg);

END

4.3.2 A short overview on coordinate changes into general
position

If an ideal fails this test, i.e. the result of prepare_max(M) is erg = M, 0 we have to
apply a coordinate change into general position.
As this is crucial for the performance of the implemented algorithm, but not in the
central scope of my Diplomarbeit, it seems advisable to use the already well-optimized
coordinate change implemented in the primdec.lib.
The method I implemented is called GeneralPos. It gets a list of maximal ideals which
failed the test prepare_max as input and returns the intersection of all real maximal
ideals of this input.
The main idea of the coordinate change is to avoid the situation that our change is
completely randomized. GeneralPos is written in a recursion such that if the depth of
the recursion tree (in Singular this is called the voice) is higher then a defined constant
we apply a completely random change.
The idea of the not completely random change is to construct a polynomial randp to
change the last variable. This change is just a little change, i.e. the coefficients of it
are not too large. As an example, in F [x, y, z] for F = Q we could change the last
variable z to z+3x+y and not to z+1001x+199y or something like that. If F = Q(s)
we could change z to z + 2x + 4y + s + 5s2 or something else. In the general case this
small variation of the last coordinate will suffice to test again with prepare_max if the
maximals ideals are real.
Let us consider an example. An ideal in which we have to apply a coordinate change
into general position was presented in Example 4.8. Lets have a look at this.

Example 4.14
Let M = 〈x2 + 1 + t, y2 − t〉� ·Q(t)[x, y]. Choosing the coordinate change

ϕ : Q(t)[x, y]→ Q(t)[x, y]

x 7→ x

y 7→ y + x + t
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4 The zero-dimensional case

we get:

ϕ(M) = 〈x2 + 1 + t, (y + x + t)2 − t〉
= 〈x2 + 1 + t, x2 + 2xy + 2tx + y2 + 2ty + t2 − t〉

Its lexicographical Groebner basis w.r.t. the ordering y < x is:

Gϕ = {y4 + 4ty3 + (6t2 + t)y2 + (4t3 + 4t)y + (t4 + 6t2 + 4t + 1),

(−4t− 2)x− y3 + (−3t)y2 + (−3t2 − 2t− 3)y + (−t3 − 2t2 − 3t)}.

Now y4 + 4ty3 + (6t2 + 2)y2 + (4t3 + 4t)y + (t4 + 6t2 + 4t + 1) is not real in Q(t)[y] as
y4 +4ty3 +(6t2 +2)y2 +(4t3 +4t)y +(t4 +6t2 +4t+1) is positive semi-definite (which
we conclude from the decision method presented in Chapter 3). Hence as in Example
4.8 we get that M is not real.

In all my tests it didn’t happen often that I had to change into general position for
the test of being real. In fact the only examples I found in which there is a need to
apply this change are ideals over transcendent extensions of Q which are of the form
in Example 4.8, i.e. every generator is univariate and real. For these cases I have not
yet found any property to check realness by the aid of Singular without applying this
change. A simple example for an ideal in which this change yields the reality of a
maximal ideal is the following:

Example 4.15
Let M = 〈x2 + 1− t, y2 − t〉� ·Q(t)[x, y]. Here the same coordinate change as in the
example above yields:

ϕ(M) = 〈x2 + 1− t, (y + x + t)2 − t〉
= 〈x2 + 1− t, x2 + 2xy + 2tx + y2 + 2ty + t2 − t〉

Here the Groebner basis w.r.t. the lexicographical ordering y < x is:

Gϕ = {y4 + 4ty3 + (6t2 − 4t + 2)y2 + (4t3 − 8t2 + 4t)y + (t4 − 4t3 + 2t2 + 1),

2x + y3 + 3ty2 + (3t2 − 4t + 3)y + (t3 − 4t2 + 3t)}.

Now y4 + 4ty3 + (6t2 − 4t + 2)y2 + (4t3 − 8t2 + 4t)y + (t4 − 4t3 + 2t2 + 1) is real as it
is indefinite and the degree of 2x + y3 + 3ty2 + (3t2 − 4t + 3)y + (t3 − 4t2 + 3t) in x
is odd. Hence ϕ(M) is real by Proposition 4.9, thus M is real. In fact M is α-real in
every ordering α of Q(t) satisfying the condition t ≥ 1.

To finish this subsection let me explain the idea of the algorithm GeneralPos in
pseudo code. Note that this is just a simplification and the complete algorithm is
more complicated.
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4.3 How to decide whether a maximal ideal is real

Algorithm 4.2 (Coordinate change into general position)
proc GeneralPos(NonPrep)

INPUT : A set NonPrep := {M1, . . . ,Ml} of maximal ideals in F [x1, . . . , xn]

OUTPUT: The intersection ideal J := ∩ re
√

Mi bye the aid of a coordinate change.

BEGIN

if (the voice of the procedure is less then 10)

{

Initialize a randomized polynomial

randp :=


xn +

∑n−1
i=1 aixi ai ∈ {0, 1, . . . , 5} randomized

and F = Q

xn +
∑n−1

i=1 aixi + b1y1 + b2y
2
1 ai, bj ∈ {0, 1, . . . , 5} randomized

and F = Q(y1, y2, . . . , ym)

}

else

{

randp := randomLast(100); 3

}

Define the map ϕ as follows:

ϕ(xi) :=

{
xi if i < n

randp if i = n

By the definition of randp the inverse map is defined as follows:

ϕ−1(xi) :=

{
xi if i < n

2xn − randp if i = n

while NonPrep 6= ∅ do
3Where randomLast randomizes a polynomial xn +

∑n−1
i=1 aixi, where the ai are integers between

0 and 100.
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4 The zero-dimensional case

{

Choose an M ∈ NonPrep;

NonPrep := NonPrep \ {M};

Initialize Prep := ∅ and StillNonPrep = ∅;

if (prepare_max(ϕ(M)) = M, 1 and M 6= 〈1〉)

{

Prep := Prep ∪ {M};

}

else

{

StillNonPrep := SillNonPrep ∪ {ϕ(M)};

}

}

Prepared :=
⋂

M∈Prep M ;

if (StillNonPrep = ∅)

{

J := Prepared;

}

else

{

J := Prepared ∩ (ϕ−1(GeneralPos(StillNonPrep)));

}
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4.4 An algorithm to compute the zero-dimensional radical

return(J);

END

As an example for this algorithm we could take as input the ideal of Example 4.14
and 4.15, i.e. let NonPrep := {M1, M2}, where M1 = 〈x2 + 1 + t, y2 − t〉 and M2 =
〈x2 + 1 − t, y2 − t〉. With the coordinate change ϕ of the previous two examples
(ϕ(x) = y, ϕ(y) = y + x + t) we get that the resulting ideal J is M2.

4.4 An algorithm to compute the zero-dimensional
radical

From the explanation in the last section, it is not difficult to get an algorithm which
computes the real radical of a zero-dimensional ideal J in F [x1, . . . , xn].

Before explaining the algorithm, we want to simplify the input as much as possible.
For example the following remark is very useful.
Remark 4.16
Let I = 〈f1, f2, . . . , fr〉�F [x1, . . . , xn] be a zero-dimensional ideal. For every generator
with the prime factorization fi =

∏l
j=1 p

αj

j , set:

gj :=
l∏

j=1

pj,

where
pj =

{
pj if pj is not univariate

RealPoly(pj) if pj is univariate
.

Then I ⊆ 〈g1, . . . , gn〉 ⊆ re
√

I.

Proof
The first inclusion is clear as every generator fi of I is divisible by the corresponding
gi hence in the ideal 〈g1, . . . , gn〉. For the second inclusion we have to show that every
gi is in re

√
I. Therefor we show that gi ∈ re

√
〈fi〉 which is a subideal of re

√
I.

Let hi := fi

gi
, where fi is the square-free part of fi. Then every hi is the product of

non-real univariate factors qj and hence re
√
〈h〉 = 〈1〉. Now

gi ∈ 〈fi〉 ⊆ re
√
〈fi〉

= re
√
〈gi · hi〉

Lemma 1.8
= re

√
〈gi〉 ∩ re

√
〈hi〉

= re
√
〈gi〉 ∩ 〈1〉 = re

√
〈gi〉 �
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4 The zero-dimensional case

From this remark we get a procedure to simplify every generator of the ideal I. Now
the algorithm for the zero-dimensional computation is the following:

Algorithm 4.3
proc RealZero(I)

INPUT : a zero-dimensional ideal I � F [x1, . . . , xn]

OUTPUT: an ideal J s.th. J = re
√

I

Simplify the ideal I = 〈f1, . . . , fr〉 to J = 〈g1, . . . , gr〉 as described in Remark 4.16,4

Compute the associated primes of Max := Min(I) with primdecGTZ or primdecSY.
(This depends on which algorithm is faster.4).

Initialize Prep := ∅ and NonPrep := ∅

while Max 6= ∅ do

{

Choose an M ∈Max

Max := Max \ {M}

Compute erg = M, j with Algorithm 4.1.

If j = 1 and M 6= 〈1〉

{

Prep := Prep ∪ {M}

}

else

{

NonPrep := NonPrep ∪ {M}

4These operations are applied with a timer by the aid of the watchdog command. watch-
dog(command, timer) returns the result of the command if the time for the command finishes
before the timer.
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4.4 An algorithm to compute the zero-dimensional radical

}

Prepared :=
⋂

M∈Prep M :

NonPrepared := GeneralPos(NonPrep);5

According to Lemma 1.8 we get that

re
√

I =
re
√

J = Prepared ∩NonPrepared =: J.

return(J);

To finish this chapter I give an example in which every path of Algorithm 4.3 is
taken.
Example 4.17
Let

I = 〈(x2y3 − tx2y + y6 − y5 − ty4 + t2 + 1) · (y3 − t2y2 + (−t3 + t2 − t)y + t3),

(−2t)x4 − 4tx2 + (−t + 1)y6 + (−t2 + t)y5 + (t2 − t)y4 + (−t4 + t3)y2+

(t4 − t3)y + (t5 − t4 + 2t3 − 2t), y7 + t2y4 − t2y3 − t4, (−t)x2y2 + t2x2−
y6 − ty5 + ty4 + (−t3 + t2 − t)y2 + t3y + (t4 − t3 + t2)〉.

Then every generator of I is simplified in the sense of Remark 4.16.

1. The primary decomposition of I provides 4 minimal primes which are

• M1 = 〈x2 + 1− t, y3 + t2〉

• M2 = 〈x2 + t2 + 1, y2 + t〉

• M3 = 〈x2 + 1− t, y2 − t〉

• M4 = 〈x2 + 1 + t, y2 − t〉

We set Max := {M1, M2, M3, M4}.

2. Prep := ∅ and NonPrep := ∅

3. As Max is not empty choose M1 ∈Max and set

Max := Max \ {M1} = {M2, M3, M4}.
5The idea of this approach was explained with 2 examples in the previous subsection.
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4. prepare_max(M1) = M1, 1 because of Proposition 4.9. Hence set:

Prep := Prep ∪ {M1} = {M1}
NonPrep := NonPrep = ∅

5. As Max is not empty choose M2 ∈Max and set

Max := Max \ {M2} = {M3, M4}.

6. prepare_max(M2) = 〈1〉, 1 by Lemma 3.2 w.r.t. the lexicographical ordering y < x.
Hence set:

Prep := Prep = {M1}
NonPrep := NonPrep = ∅

7. As Max is not empty choose M3 ∈Max and set

Max := Max \ {M3} = {M4}.

8. prepare_max(M3) = M3, 0. Hence we have to apply a coordinate change and set:

Prep := Prep = {M1}
NonPrep := NonPrep ∪ {M3} = {M3}

9. As Max is not empty choose M4 ∈Max and set

Max := Max \ {M4}.

10. prepare_max(M4) = M4, 0. Hence we have to apply a coordinate change and set:

Prep := Prep = {M1}
NonPrep := NonPrep ∪ {M4} = {M3, M4}

11. Now Max is empty and we set Prep = {M1}.

12. From the examples 4.14 and 4.15 we conclude with the coordinate change ϕ satis-
fying ϕ(x) = x, ϕ(y) = y + x + t that M3 is real and M4 is not real. Hence

NonPrep = {M3}
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13. Set

J = Prep ∩NonPrep = M1 ∩M3

= 〈y5 − ty3 + t2y2 − t3, x2 + (−t + 1)〉

Hence the real radical of I is

J = 〈y5 − ty3 + t2y2 − t3, x2 + (−t + 1)〉.

In the next chapter I explain the algorithm for the higher dimensional case, i.e. for
arbitrary polynomial ideals J � F [x1, . . . , xn]. This approach will act via a reduc-
tion to the zero-dimensional case and localization on every subset of the variables
{x1, . . . , xn}.
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5 An algorithm to compute the
real radical of an arbitrary
polynomial ideal

We are now able to compute the real radical of zero-dimensional ideals over the Q-
algebra Q(y1, y2, . . . , ym)[x1, . . . , xn]. To obtain an algorithm for the higher dimen-
sional case we use a reduction to the zero dimensional case.
As we will see soon, taking all isolated real points of an ideal yields a zero dimensional
ideal IIso. For this ideal we compute the zero-dimensional radical as described in the
previous chapter.
This chapter uses the definitions, propositions. theorems and lemmas of the appendix.
For detailed information see [BN98] Chapter 3 and 4.

As in the previous chapter, let F := Q(y1, y2, . . . , ym) for the whole chapter.

Since −1 is no sum of squares in F , we conclude that F is a formally real field with
the pre-ordering re =

∑
F 2. Hence every ordering α ∈ X(F ) of F extends re. For

every ordering α ∈ X(F ) let Rα denote the unique real closure of (F, α).

5.1 Isolated real points

We consider a real closed field Rα with its order topology and Rn
α with the product

topology of this order topology. This can be understood as a generalization of the
Euclidean topology in R to arbitrary real closed fields. We can define the isolated real
points of an ideal I ∈ F [x1, . . . , xn] as follows:

Definition 5.1
Let I be an ideal in F [x1, . . . , xn], then

a) a point x ∈ VF (I) is called real isolated point of I if it is isolated in some space
VRα(I) ⊆ Rn

α for a suitable Rαw.r.t. the induced topology.

b) The set of all isolated points will be denoted by VIso(I).
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5 An algorithm to compute the real radical of an arbitrary polynomial ideal

c) Finally, we define IIso := IF (VIso(I)) which is the ideal describing the F -Zariski
closure of VIso(I).

It is now easy to verify by the general Real Nullstellensatz see Theorem B.14 that IIso

is real.

The importance of IIso in connection with the computation of real radicals can be seen
in the following proposition.
Proposition 5.2
Let I � F [x1, . . . , xn] be an ideal. Then IIso is contained in any zero-dimensional
component of re

√
I, i.e. every zero-dimensional component of re

√
I consists only of

isolated points.

Proof
Let M be a zero-dimensional component of I. Then M is real by Proposition B.7.

Let a ∈ Vre(M) be an arbitrary point. Then a refers, by the Real Nullstellensatz
(Theorem B.14 and Remark B.15), to a real closed field R ⊇ F and a maximal ideal
M = IR(a) � ·R[x1, . . . , xn]. Hence a is the only zero of M in Rn.

Let us first of all see that M is a zero-dimensional component of re
√

I ·R.
Assume contrary:

Then we would find a further real prime P between re
√

I ·R and M . But then
re
√

I ⊆ P ∩ F [x1, . . . , xn] =: P ⊆M.

As M is a minimal prime of re
√

I we get M = P . But now R : F is an algebraic
extension (see definition of the real closure), hence R[x1, . . . , xn] : F [x1, . . . , xn] is an
integral extension and thus P = M by the Lying Over theorem.

As a component of re
√

I ·R the maximal ideal M occurs in the primary decomposition
of re
√

I ·R, e.g. re
√

I ·R = (
⋂

i Pi) ∩M .

Now we can choose an f ∈ (
⋂

i Pi) \M . Then VR(I) ∩ {f 6= 0} = {x} and thus x is
isolated in VR(I) w.r.t. Zariski topology. But as Zariski open subsets are much bigger
then the open set in the ’Euclidean’ topology of Rn we get that x is isolated in sense
of Definition 5.1. Applying the IF -functor, we get

IIso = IF (VIso(I)) ⊆ IF (x) ⊆M. �

Of course it may happen that an ideal I has more real isolated points than its real
radical has zero-dimensional components. Let us consider for example an ideal I �

Q[x1, . . . , xn].
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5.1 Isolated real points

(a) The cusp y2 − x3 (b) Our P1

Figure 5.1: Some varieties

Note first that Q is an ordered field with unique real closure Ralg = R∩Q (see Lemma
B.2). Hence every isolated point of I is isolated in Ralg. By the Tarski-Seidenberg
principle we can even say that each of this isolated points is isolated in R and we don’t
have to worry about orderings. Now the example is:

Example 5.3
Consider the ideal I in primary decomposition

I = 〈y2 − x2 · (x− 1)〉 ∩ 〈x + 1, y〉

where P1 := 〈y2−x2·(x−1)〉 is the prime ideal resulting from the cuspidial curve y2−x3

by changing one linear factor x to x−1. The consequence of this change is that P1 has
an isolated point (0, 0) ∈ R2. You can see this in figure 5.1. As I is the union of the
components P1 and P2 = 〈x + 1, y〉 the isolated points are VIso(J) = {(−1, 0), (0, 0)}
and IIso = 〈x + 1, y〉 ∩ 〈x, y〉. But the only zero-dimensional component of re

√
I is P2.

5.1.1 Singular points

Let us recall the definition of singular points and the singular locus.

Definition 5.4 (see. [GP02] Definition A.8.7)
Let X be a variety and p ∈ X. Then p is called a singular point of X, or X is called
singular at p, if the local ring OX,p is not a regular local ring. Otherwise p is called a
regular, or non-singular point of X. X is called regular or smooth if it is regular
at each point p of X.

Comparing this definition with the Corollary 5.6.14 from the computer algebra book
by Greuel and Pfister ([GP02]) yields the well-known Jacobian criterion.
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5 An algorithm to compute the real radical of an arbitrary polynomial ideal

Theorem 5.5 (Jacobian criterion)
Let X ⊆ K

n be a variety and IK(X) = 〈f1, . . . , fr〉 then a point p ∈ X is regular iff

the rank of the Jacobian matrix
(

∂fi

∂xj
(p)
)

i.j
is n− dimOX,p. If X is equi-dimensional

then a point p is singular iff

rk

(
∂fi

∂xi

(p)

)
i.j

< n− dim X.

From this definition we are now able to define the singular locus of an ideal.

Definition 5.6 (Singular locus)
Let I � K[x1, . . . , xn] be an arbitrary ideal. As usual let

VSing(I) := {x ∈ K : VK(I) is singular at x}.

The the ideal describing the Singular locus of I is ISing := IF (VSing(I)).

After recalling singular points we follow the article of Becker and Neuhaus (cf [BN98]
Chapter 3). To prove the main theorem for real isolated points, namely that IIso is a
zero-dimensional ideal, we show the following proposition:

Proposition 5.7
Let I � F [x1, . . . , xn] and R a real closed intermediate field of the extension F : F .
Moreover let Q be a minimal prime of the extension ideal I · F of positive dimension.
Let x ∈ VF (Q). be any point. If x is regular in VF (I), then it is not isolated in VR(I).

To prove this we need the following auxiliary lemma.

Lemma 5.8
Let R be a real closed field with algebraic closure R = R(

√
−1) and Q any prime ideal

in R[x1, . . . , xn]. Then P := Q∩R[x1, . . . , xn] is a prime ideal and for the conjugation
σ ∈ Aut(R : R) holds that P ·R = Q ∩ σ(Q).

The idea of the proof is to show the equality of the resulting varieties using Hilbert’s
Nullstellensatz. Note that both P ·R and Q∩σ(Q) are already radical in R[x1, . . . , xn].

Using this lemma we prove the proposition.

Proof
Without loss of generality we can assume that d = dim P ∈ {1, . . . , n − 1}. Let
σ ∈ Aut(F : F ) denote the conjugation. As x ∈ VF (I)∩Rn we know that x = σ(x) ∈
VF (σ(Q)) where σ(Q) is a minimal prime of σ(I · F ) = I · F .
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5.1 Isolated real points

If Q 6= σ(Q), then x would be a zero of two distinct irreducible components of VF (I)
and thus be a singular point. This is a contradiction to the assumption and hence
Q = σ(Q). By Lemma 5.8 we get that since P = Q∩R[x1, . . . , xn], P ·F = Q = σ(Q).
Note that dim P = dim Q = d.
Now let {f1, . . . , fr} be a set of generators of P . Then

Q = P · F = 〈f1, . . . , fr〉F [x1, . . . , xn]

and because of the regularity of x ∈ VF (I) we get via the Jacobian Criterion (Theorem
5.5) that the rank of the Jacobian matrix ( ∂fi

∂xj
)i=1,...,r;j=1,...,n is n−d. This fact implies

that x is a regular point of P and thus P = re
√

P and P is real. (cf. [BCR98]
Proposition 3.3.15)

According to [[BCR98], Proposition 3.3.7] there exist n−d polynomials g1, . . . , gn−d ∈
P as well as a neighborhood U of x in Rn such that

VR(g1, . . . , gn−d) ∩ U = VR ∩ U

and
rk

(
∂gi

∂xj

)
i,j

= n− d.

Now the theorem of implicit functions (see e.g. [[BCR98], Corollary 2.9.6]) yields that
x is not isolated in VR(g1, . . . , gn−d) ∩ U ⊂ VR(I). Thus it is not isolated in VR(I). �

From Proposition 5.8 we conclude that VIso(I) ⊆ VSing(I), the set of all singular points
of the ideal I. Now VSing(I) is closed and every component of dimension greater than
0 of VSing(I) has no isolated points. Thus we conclude that VIso(I) has a dimension
less then a equal zero and hence IIso equals either the unit ideal or has dimension zero.
Let’s fix this fact in the following remark:
Remark 5.9
Let I �Q(y1, y2, . . . , ym)[x1, . . . , xn]. Then dim IIso ≤ 0, i.e. IIso =

⋂r
i=1 Mi for some

maximal ideals M1, . . . ,Mr.

The importance of IIso in connection with the computation of re
√

I relies on the fact
that (according to Proposition 5.2) any zero-dimensional component M of re

√
I occurs

among the Mi, i.e. every zero-dimensional component of re
√

I consists only of isolated
points.

5.1.2 The procedure zeroreduct

As we saw in Example 5.3 it may happen that some real isolated points do not refer
to any zero-dimensional component of re

√
I. Due to this fact we do not know how to
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5 An algorithm to compute the real radical of an arbitrary polynomial ideal

compute VIso(I) from the given input I. We will see that it suffices to compute an
ideal J of dimension at most zero satisfying I ⊆ J ⊆ IIso. This section describes an
algorithm how to compute J .

Therefore let I be a radical ideal in F [x1, . . . , xn] and I(d) = 〈f1, . . . , fr〉 for d ∈
{0, . . . , n−1} its d-dimensional part, i.e. the intersection of all d-dimensional minimal
primes of I. As I(d) is equi-dimensional the Jacobian criterion yields that

VSing(I
(d)) = VF (Jac(I(d), n− d)) and

I
(d)
Sing =

√
Jac(I(d), n− d)

where Jac(I(d), n − d) is the ideal generated by I(d) and all (n − d) × (n − d)-minors
of the Jacobian matrix

(
∂fi

∂xi

)
i.j

in F [x1, . . . , xn]. Note that by Krull’s principal ideal

theorem (see e.g. [GP02] Theorem 5.6.8), n − d ≤ r holds. Iterating the following
corollary it is possible to compute the desired ideal J .

Corollary 5.10
Let I�F [x1, . . . , xn] be a radical ideal of dimension d ∈ {1, . . . , n−1} and I =

⋂d
e=0 I(e)

its equi-dimensional decomposition. Then the ideal J := (
⋂d−1

e=0 I(e)) ∩ I
(d)
Sing has the

following properties:

(a) I ⊂ J and dim J < d

(b) VIso(I) ⊂ VIso(J)

(c) JIso ⊂ IIso

Proof
Ad (a): From [Har77] Theorem 5.3 we conclude that VSing(I

(d)) is a proper closed
subset of V (I(d)). As this theorem also holds for every irreducible compo-
nent of V (I(d)) we conclude that dim VSing(I

(d)) < d, thus dim J < d. The
inclusion I ⊂ J is clear.
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5.1 Isolated real points

Ad (b):

Let x ∈ VIso(I)

⊆ (
d−1⋃
e=0

VF (I(e))) ∪ VIso(I
(d))

5.7

⊆ (
d−1⋃
e=0

VF (I(e))) ∪ VSing(I
(d))

= VF ((
d−1⋂
e=0

I(e)) ∩ I
(d)
Sing)

= VF (J).

The fact that x is isolated in VR(I) yields that x is isolated in VR(J) as
VR(J) ⊂ VR(I) by the Real Nullstellensatz B.14.

Ad (c): Clear from the Real Nullstellensatz. �

Iterating Corollary 5.10 we get the following corollary.

Corollary 5.11
Let I � F [x1, . . . , xn]. Then there exists an algorithm to compute an ideal J such that
dim J ≤ 0 and I ⊆ J ⊆ IIso.

Before I state the algorithm let me remark two important things: First, if I is already
of dimension less than equal or zero every point of I is isolated, hence I = IIso. The
second thing is that computing the radical of I may cost a lot of time. This is why I
iterate Corollary 5.10 for the ideal I and not for

√
I.

As Hilbert’s Nullstellensatz describes the variety of an ideal to be the same as for its
radical we know that VSing(I) = VSing(

√
I). For the problem of the equi-dimensional

decomposition we get the same phenomenon, i.e.
√

I(e) = (
√

I)(e) for every equi-
dimensional part and hence VSing(I

(e)) = VSing((
√

I)(e)) for every e. The only time we
have to compute radicals is to compute I

(d)
Sing, which is by definition a radical ideal.

To finish this proof let me state the procedure zeroreduct to get this ideal.

static proc zeroreduct(ideal i)
"USAGE:zeroreduct(i), i an arbitrary ideal
RETURN: an ideal j of dimension <=0 s.th. i is contained in

j and j is contained in i_{Iso} which is the Zariski closure
of all real isolated points of i

"
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5 An algorithm to compute the real radical of an arbitrary polynomial ideal

{
list equi;
int d,n,di;
n=nvars(basering);
def r=basering;

//change ring to get faster Groebner bases computation for dimensions

string rneu="ring neu=("+charstr(r)+"),("+varstr(r)+"),dp;";
execute(rneu);
ideal i=imap(r,i);

i=Groebner(i);
while (dim(i)> 0)
{

equi=equidim(i);
d=size(equi);
di=dim(equi[d]);

//to compute the singular locus
//of the top dimensional part
equi[d]=radical(equi[d]);

equi[d]=equi[d],minor(jacob(equi[d]),n-di);
equi[d]=radical(equi[d]);
i=intersect(equi[1..d]);
i=Groebner(i);

}

setring r;
i=imap(neu,i);
i=timeStd(i,301);
return(i);

}

To finish this subsection, let us consider 2 examples:
Example 5.12
1. Let I = 〈y2 − x2 · (x − 1)〉 ∩ 〈x + 1, y〉 from Example 5.3. Then I is already equi-

dimensionally decomposed with I(1) = 〈y2 − x2 · (x− 1)〉 and I(0) = 〈x + 1, y〉.
I

(1)
Sing = 〈y2 − x2 · (x− 1), 2y,−3x2 + 2x〉 = 〈x, y〉 which has dimension 0. Hence

J = I
(1)
Sing ∩ I(0) = 〈x, y〉 ∩ 〈x + 1, y〉

which was just IIso by Example 5.3.
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5.2 The theory of higher dimensional computation

2. As a simple example to see that the zero-dimensional part of the singular locus of an
ideal can be larger than the locus of isolated points we could consider the cuspidial
curve y2 − x3 = 0. Here the procedure zeroreduct acts in the same way as in the
example above and we get J = 〈x, y〉 but (0, 0) is no isolated point in the cusp as
this curve contains no isolated points.

5.2 The theory of higher dimensional computation

The main theorem for the higher dimensional computation, adapted from [BN98]
Theorem 4.5., is:

Theorem 5.13
Let I �F [x1, . . . , xn]. For any S ( {x1, . . . , xn} let J (S) denote an ideal of the quotient
ring F [x1, . . . , xn] · F (S) satisfying dim J (S) ≤ 0 and I · F (S) ⊆ J (S) ⊆ (I · F (S))Iso.
Then

re
√

I =
⋂

S({x1,...,xn}

(
re
√

J (S) ∩ F [x1, . . . , xn])

Proof
⊆ For any subset S ( {x1, . . . , xn} we have

re
√

I ⊆ (
re
√

I · F (S)) ∩ F [x1, . . . , xn])

= re
√

I · F (S) ∩ F [x1, . . . , xn]

⊆ re
√

J (S) ∩ F [x1, . . . , xn]

⊇ re
√

I is a radical ideal. So it suffices to prove that
⋂

S({x1,...,xn}(
re
√

J (S)∩F [x1, . . . , xn])

is contained in any minimal prime P of re
√

I.:
Let S0 be a maximal subset of {x1, . . . , xn} independent modulo P (see [GP02]
Definition 3.5.3) and T := K[S0]\{0}. Then PT is a zero-dimensional component
of ( re
√

I)T = re
√

IT . Thus we conclude using Proposition 5.2 (which says that
every real zero-dimensional component of IT contains (IT )Iso) that

⋂
S⊂{x1,...,xn}

(
re
√

J (S) ∩ F [x1, . . . , xn]) ⊆ re
√

J (S0) ∩ F [x1, . . . , xn]

⊆ re
√

(IT )Iso ∩ F [x1, . . . , xn]

⊆ re
√

PT ∩ F [x1, . . . , xn] = re
√

P c
T = P c

T = P�

81



5 An algorithm to compute the real radical of an arbitrary polynomial ideal

To compute the real radical of an arbitrary dimensional ideal we have to solve the
following problem:
Given a zero-dimensional radical ideal J in F (z1, . . . , zr)[x1, . . . , xn], compute the in-
tersection ideal J := J c = J ∩ F [x1, . . . , xn]. We name this problem special radical
contraction problem as J = J · F (z1, . . . , zr)[x1, . . . , xn] is just the extension of J .
Hence our aim is to compute J

c.

5.2.1 A solution to the special radical contraction problem

Let J = 〈f1, . . . , fk〉 � F (z1, . . . , zr)[x1, . . . , xn] be a zero- dimensional radical ideal.
We can assume without loss of generality (via multiplication with suitable polynomials
h ∈ F [z1, . . . , zr]) that every fi ∈ (F [z1, . . . , zr])[x1, . . . , xn] and has content 1.
The following proposition gives my solution to the contraction problem.

Proposition 5.14
Let J � F (z1, . . . , zr)[x1, . . . , xn] be given as above and let

K := 〈f1, . . . fk〉� F [z1, . . . , zr, x1, . . . , xn]

be the ideal generated by the fi considered as polynomials in F [z1, . . . , zr, x1, . . . , xn].
Then:

a) If K is a prime ideal, then K = J := J ∩ F [z1, . . . , zr, x1, . . . , xn].

b) Let K =
⋂l

i=1 Qi be the minimal primary decomposition of K. Let

Γ := {Qi : Qi · F (z1, . . . , zr)[x1, . . . , xn] 6= F (z1, . . . , zr)[x1, . . . , xn]}.

Then

K ′ : = J ∩ F [z1, . . . , zr, x1, . . . , xn]

=
⋂

Qi∈Γ

Qi. = J

Proof
Ad a) K ⊂ J = J ∩ F [z1, . . . , zr, x1, . . . , xn] is clear. Now let f ∈ J , then f ∈ J

considered as polynomial over F (z1, . . . , zr)[x1, . . . , xn]. Hence there exists a
F (z1, . . . , zr)-linear combination of the fi to get our f , say

f =
k∑

i=1

aifi (∗),
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5.2 The theory of higher dimensional computation

where every ai ∈ F (z1, . . . zr)[x1, . . . , xn]. Multiplying all denominators we get
a polynomial g ∈ F [z1, . . . , zr] such that g · ai ∈ F [z1, . . . , zr, x1, . . . , xn] for
every i. Thus the equality (∗) changes to:

g · f =
k∑

i=1

(g · ai)fi (∗∗).

From (∗∗) we conclude that g · f ∈ K, but then g ∈ K or f ∈ K.r
Assume g ∈ K. Then g ∈ J but g is a unit in F (z1, . . . , zr). Thus 1 ∈ J which
is a contradiction to the assumption. So we finally get the desired J ⊂ K.

Ad b) Again K ′ ⊂ J is clear. Now let f ∈ J . As

J = J · F (z1, . . . , zr)[x1, . . . , xn] 6= F (z1, . . . , zr)[x1, . . . , xn]

we conclude that f is no polynomial in F [z1, . . . , zr]. Since J is radical we see
that every primary component Qi satisfying

Qi · F (z1, . . . , zr)[x1, . . . , xn] 6= F (z1, . . . , zr)[x1, . . . , xn]

is already prime. Now

f ∈ J = J ∩ F [z1, . . . , zr, x1, . . . , xn]

= (K · F (z1, . . . , zr)[x1, . . . , xn]) ∩ F [z1, . . . , zn, x1, . . . , xn]

= [(
l⋂

i=1

Qi)F (z1, . . . , zr)[x1, . . . , xn]] ∩ F [z1, . . . .zr, x1, . . . , xn]

⊆ [
l⋂

i=1

(Qi · F (z1, . . . , zr)[x1, . . . , xn])] ∩ F [z1, . . . , zr, x1, . . . , xn]

= [
⋂

Qi∈Γ

Qi · F (z1, . . . , zr)[x1, . . . , xn]] ∩ F [z1, . . . , zr, x1, . . . , xn]

=
⋂

Qi∈Γ

(Qi · F (z1, . . . , zr)[x1, . . . , xn] ∩ F [z1, . . . , zr, x1, . . . , xn])

a)
=
⋂

Qi∈Γ

Qi = K ′

Hence J ⊆ K ′ and we conclude that J = K ′
�

Proposition 5.14 describes in detail an algorithm to intersect the zero-dimensional real
radical of J (S) with the ground ring F [x1, . . . , xn].
I implemented this procedure in Singular and named it contnonloc for the contraction
of Je to the non-local ground ring F [x1, . . . , xn]. It gets as input 3 parameters:
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5 An algorithm to compute the real radical of an arbitrary polynomial ideal

• the ideal J � F [z1, . . . , zr, x1, . . . , xn] described above,

• a string of parameters which consists of all the zi and

• a string of variables which are all the xi.

Then it computes the primary decomposition of the ideal K and computes the desired
J = K ′ using Proposition 5.14 b).
Finally, let us consider two examples:

Example 5.15
a) Let J = 〈y2 − x3〉� Q(x)[y]. As y2 − x3 ∈ Q[x, y] is prime, we get by Proposition

5.14 a) that J = 〈y2 − x3〉.

b) Let J = 〈x3z2 + z, x2y + z〉�Q(x)[y, z] be given. We want to compute J .
Set K = 〈x3z2 + x2y, x2y + z〉. Then K = Q1 ∩Q2 ∩Q3 where

• Q1 = 〈y3 + z5, xz2 − y, xy2 − z3, x2y + z, x3z + 1〉 = P1 is prime and in Γ.

• Q2 = 〈y, z〉 = P2 is prime and in Γ-

• Q3 = 〈x2, z〉 where its minimal prime P3 = 〈x, z〉 is not in Γ.

By the aid of Proposition 5.14 we get that J = K ′ = P1 ∩ P2. Hence

J := J ∩Q[x, y, z] = 〈y3 + z5, xz2 − y, xy2 + z3, z2y + z〉.

5.2.2 The algorithm to compute the real radical of polynomial
ideals I over Q(x1, . . . , xn)

With all the machinery prepared in the last chapters and sections, we are now able to
compute the real radical of an arbitrary polynomial ideal J � F [x1, . . . , xn].
The idea how to compute this was presented in Theorem 5.13. What we should do
again is to simplify the input using Remark 4.16. This simplification removes some
non-real zero-dimensional components . All other simplifications are hidden in the
child algorithms zeroreduct, RealZero, contnonloc.
To describe an algorithm we need a procedure to compute the power set of {1, . . . , n}.
Recall that this has the cardinality 2n. If we now write every number r between 0
and 2n − 1 in its binary representation, this r refers bijective to exactly one subset
{j1, . . . , jk} by the equality

r =
k∑

i=1

2ji−1.
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5.2 The theory of higher dimensional computation

Note that the sum of nothing is 0.

Example 5.16
Enumerate every subset of {1, 2, 3}. There are 8 subsets: As an example the number
5 is 20 + 22, hence j1 = 1 and j2 = 3. Thus 5 refers to {1, 3}. 0 always refers to the
empty set.

In Singular I describe all my sets as lists. To avoid the problem with the empty list
I decided only to compute every non-empty subset. On these subsets we can localize
as described in Theorem 5.13.
Obviously we obtain the following procedure:

static proc subset(int n)
"USAGE :subset(n); n>=1 in Z
RETURN :l a list of all non-empty subsets of {1,..,n}
EXAMPLE:subset(n) shows an example;
"
{
list l,buffer;
int i,j,binzahl;
if (n<=0)
{

return(l);
}
int grenze=int(exp(2,n))-1;//computes 2^n-1
for (i=1;i<=grenze;i++)
{
binzahl=i;
for (j=1;j<=n;j++)
{
if ((binzahl mod 2)==1)
{

buffer=buffer+list(j);
}
binzahl=binzahl div 2;

}
l[i]=buffer;
buffer=list();

}
return(l);

}
example
{ "EXAMPLE:"; echo = 2;
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5 An algorithm to compute the real radical of an arbitrary polynomial ideal

subset(3);
subset(4);

}

Now with all these procedures it is not difficult to write the final algorithm and to
finish my Diplomarbeit. Here I state my final procedure in pseudo-code. In Singular
it has the tag real:
Algorithm 5.1
proc real(I)

INPUT : an ideal I �Q[x1, . . . , xn]

OUTPUT: an ideal J with J = re
√

I

Compute the subsets SI of {x1, . . . , xn}.

Compute the zero-dimensional ideals J (Si) �Q(Si)[{x1, . . . , xn}\Si] for every i using
the procedure zeroreduct.

Compute the real radicals re
√

J (Si) of the J (Si) as described in Chapter 4.

Use the procedure contnonloc and set

J :=
⋂

S({x1,...,xn}

(
re
√

J (S) ∩ F [x1, . . . , xn]).

Considering Theorem 5.13 return J .

To conclude this chapter let us consider 2 examples:
Example 5.17

1. Let I = 〈y2 − x2 · (x− 1)〉 ∩ 〈x + 1, y〉�Q[x, y] from example 5.3. Then I(1) =

〈y2 − x2 · (x − 1)〉 and I(0) = 〈x + 1, y〉 are both real, hence I is real. Let us
compute the real radical with the aid of Proposition 5.13.
The subsets are S0 = ∅, S1 = {x}, S2 = {y}.

a) I ·Q(S0) = I and the zero reduction of I is J (S0) = 〈x, y〉 ∩ 〈x + 1, y〉 as we
computed in Example 5.12.1. J (S0) is already real.

b) I ·Q(S1) = I ·Q[x] = 〈y2−x2·(x−1)〉∩〈x+1, y〉 = 〈y2−x2·(x−1)〉�Q(x)[y].
I ·Q(x) is already zero-dimensional. Thus we only have to compute its real
radical. As y2 − x2 · (x− 1) is indefinite by Lemma 3.28 we conclude that

J (S1) = 〈y2 − x2 · (x− 1)〉 ∈ Q(x)[y1, y2, . . . , ym]
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is real and thus 〈y2 − x2 · (x − 1)〉 ∈ Q[x, y] is real as it is prime (see
Proposition 5.14).

c) See b).

Hence re
√

I = (〈x, y〉 ∩ 〈x + 1, y〉) ∩ 〈y2 − x2 · (−1)〉 = I

2. Let

I = 〈x6y2z4 − 2x5y3z2 + x4y4 + 2x4z5−
4x3y2z3 + 2x2y3z + x2z6 − 2xyz4 + y2z2〉

Now there are seven subsets on which we can localize. They are: S0 = ∅, S1 =
{x}, S2 = {y}, S3 = {x, y}, S4 = {z}, S5 = {x, z}, S6 = {y, z}.

a) J (S0) = zeroreduct(I) = 〈1〉�Q[x, y, z]. Hence

(
re
√

J (S0)) ∩Q[x, y, z] = 〈1〉

b) J (S1) = 〈x3z2 +z, x2y +z〉�Q(x)[y, z] which is already real. From Example
5.15 b) we get that

J1 := (
re
√

J (S1)) ∩Q[x, y, z] = 〈y3 + z5, xz2 − y, xy2 + z3.x2y + z〉.

I only state the last 5 ideals.

c) J2 := (
re
√

J (S2)) ∩Q[x, y, z] = 〈xz2 − y, xy2 + z3, x2y + z, x3z + 1, z5 + y3〉

d) J3 := (
re
√

J (S3)) ∩Q[x, y, z] = 〈x3yz2 − x2y2 + xz3 − yz〉

e) (
re
√

J (S4)) ∩Q[x, y, z] = J2

f) (
re
√

J (S5)) ∩Q[x, y, z] = (
re
√

J (S6)) ∩Q[x, y, z] = J3

Finally we get that

re
√

I = J1 ∩ J2 ∩ J3 = J3

= 〈x3yz2 − x2y2 + xz3 − yz〉.
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A General concepts and basic
definitions of real algebra

To explain an algorithm in Q(y1, y2, . . . , ym) we need some more information about
real algebra, real fields and τ -real ideals. For more details see [KS89] and [BCR98].

A.1 Ordered fields and their real closures

A.1.1 Orderings and pre-orderings of fields

From now on let K denote an arbitrary field, i.e. K need not necessarily be a subfield
of R.

Definition A.1
An ordering of K is a subset τ ⊂ K with

(1) τ + τ ⊆ τ and τ · τ ⊆ τ

(2) τ ∩ (−τ) = {0}

(3) τ ∪ (−τ) = K.

The pair (K, τ) is called an ordered field.

Notation A.2
1. If (1) and (3) are assumed, then (2) is equivalent to

(2’) −1 6∈ τ .

2. If τ is an ordering of K. Then the convention a ≤ b ⇐⇒ b − a ∈ τ gives a
total ordering on K with

(i) a ≤ b =⇒ a + c ≤ b + c and
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(ii) a ≤ b, c ≥ 0 =⇒ ac ≤ bc ∀a, b, c ∈ K

Conversely every total ordering ≤ which satisfies (i) and (ii) defines an ordering
τ via its positive hull

τ := {a ∈ K : a ≥ 0}.

As these constructions are inverse to each other. We call total orderings satis-
fying (i) and (ii) simply orderings, too.

Definition A.3
A pre-ordering of K is a subset σ ⊂ K, with

(1) σ + σ ⊂ σ and σ · σ ⊂ σ

(2) σ ∩ (−σ) = {0}

(4) K2 ⊆ σ, i.e. a2 ∈ σ for all a ∈ K

Remark A.4
1. Again assuming (1) and (4) property (2) is equivalent to

(2’) −1 6∈ σ

2. Every ordering is a pre-ordering, since (3) implies (4).

3. If σ is a pre-ordering of K, then a ≤ b ⇐⇒ b − a ∈ σ (a, b ∈ K) defines a
partial ordering which is compatible with the field axioms.

4. Let Σ = {σα : α ∈ I} be a non-empty family of pre-orderings of K. Then

i.
⋂
α

σα is a pre-ordering.

ii. If additionally Σ satisfies the condition that there exists ∀α, β ∈ I a γ ∈ I
s.th. σα ∪ σβ ⊂ σγ then

⋃
α

σα is a pre-ordering.

In particular, if K has a pre-ordering, then there exists a minimal one. This is denoted
by re :=

∑
K2, with

∑
K2 := {a2

1 + a2
2 + . . . + a2

n : n ∈ N, a1, a2, . . . , an ∈ K}.
It’s clear that

∑
K2 ⊆ σ for every pre-ordering σ of K, but

∑
K2 is a pre-ordering

iff −1 6∈
∑

K2.

Definition A.5
The field K is called formally real if −1 is no sum of squares, i.e. if −1 6∈

∑
K2.
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We see that every field K admits a pre-ordering iff K is formally real.
In this case

∑
K2 is its minimal pre-ordering. Note that every formally real field has

characteristic 0. If char K = p we would have −1 = (p− 1) · 12. So it is not possible
to order finite fields.

Let us see that every pre-ordering is the intersection of several orderings.

Lemma A.6
Let σ be a pre-ordering of K and let a ∈ K \ σ. Then

1. σ[a] := σ − aσ = {b− ac : b, c ∈ σ} is a pre-ordering of K,

2. there exists an ordering τ of K such that σ ⊂ τ .

Proof
Ad 1. The properties (1) and (4) are clear for σ[a]. Let us show (2′):

Suppose −1 ∈ σ[a], i.e. −1 = b− ac with b, c ∈ σ. Then c 6= 0 and
a = c−2 · c · (1 + b) ∈ σ, which is a contradiction.

Ad 2. Let Mσ := {σ′ : σ′ is a preordering, σ ⊂ σ′}. Mσ is partially ordered by inclu-
sion and σ ∈Mσ so by Zorn’s Lemma and Remark A.4 3. there exits a maximal
pre-ordering τ ∈M . This τ has to be an ordering of K, because if a 6∈ τ , then
τ [a] = τ due to the maximality of τ , so −a ∈ τ . �

Theorem A.7
Every pre-ordering σ is the intersection of orderings of K.

Proof
σ ⊆

⋂
{τ : τ is an ordering of K and σ ⊂ τ} is trivial. Let a ∈ K \ σ be arbitrary,

then σ[a] is a pre-ordering by the previous lemma. Hence there exists an ordering τ
with σ ⊂ σ[a] ⊂ τ . Since −a ∈ τ and a 6= 0, it follows that a 6∈ τ . Thus

σ =
⋂
{τ : τ is an ordering of K and σ ⊂ τ}

�

Definition A.8
For any formally real field K the set of all orderings is denoted by X(K).

Corollary A.9
K has an ordering iff K is formally real.

Corollary A.10 (E. Artin)
Let char K 6= 2 and a ∈ K. a is non-negative w.r.t. every ordering of K iff a is the
sum of squares in K.
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Proof
If K is formally real, then

∑
K2 is a pre-ordering of K. Here theorem A.7 leads to

the assertion. If K is not formally real, then
∑

K2 = K as for every a ∈ K

a = (
a + 1

2
)2 + (−1) · (a− 1

2
)2.

�

Example A.11
1. The field of real numbers and hence every subfield has only the ordering which

was introduced in school.

2. Let Q(t) be the function field in one variable over Q, ϑ ∈ R a transcendent
number over Q. Then f(ϑ) is a well-defined real number for every f ∈ Q(t) and
the subset

τ := {f ∈ Q(t) : f(ϑ) ≥ 0}

is an ordering of Q(t). This ordering is induced by the field embedding

Q(t) ↪→ R

f 7→ f(ϑ)

3. Let (F,≤) be an ordered field, F (t) the rational function field in one variable
over F . For every a ∈ F we define

Pa,+ := {0} ∪ {(t− a)r · f(t) : r ∈ Z, f ∈ F (t) with f(a) 6=∞ and f(a) > 0}
Pa,− := {0} ∪ {(a− t)r · f(t) : r ∈ Z, f ∈ F (t) with f(a) 6=∞ and f(a) > 0}

which are both orderings of F (t). Both orderings extend the ordering ≤ of F .

Notation A.12
Let (K, τ) be an ordered field, we define:

1. signτ : K → {−1, 0, 1} with signτ (0) = 0 and if a 6= 0 signτ (a) = 1 if a ∈ τ , else
signτ (a) = −1

2. The absolute value | · |τ w.r.t. τ is defined as |a|τ = a · signτ (a).

3. The generalized intervals [a, b]τ , [a, b[τ .]a, b]τ , ]a, b[τ are defined in the obvious
way.

4. ∞ and −∞ are clear from definition of τ , too.
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A.2 Real closed fields and the real closure

A.2.1 Real closed fields

Definition A.13
A real closed field R is a formally real field with the following properties

(i) R2 is the unique ordering of R

(ii) every polynomial F ∈ R[x] of odd degree has a root in R

Note, that (ii) is a generalization of the fundamental theorem of algebra over R and
that R is real closed.
We can imagine real closed fields as R-like fields. These fields have common properties
with the real numbers. Let me state some basic theorems about real closed fields and
their properties:

Theorem A.14
A formally real field R is real closed iff R[i] = R[t]/〈t2 + 1〉 is algebraically closed.

Proof
⇒ The same proof as for C = R[i] is the algebraic closure of R

⇐ The only thing we have to show is that R2 is an ordering of R.

To (1) Let a2, b2 ∈ R2, then (ab)2 = a2 · b2 ∈ R2. As R[i] is the algebraic closure of
R, there exist c, d ∈ R such that a+ ib = (c+ id)2 (clearly a− ib = a + ib =
(c− id)2), but then a2 + b2 = (c2 + d2)2 ∈ R2.

To (2’) As R is not algebraically closed and R[i] is its algebraic closure, −1 6∈ R2.

To (4) Let a ∈ R. Then x2 − a has a root c + id ∈ R[i]. Then

a = (c + id)2 = (c2 − d2) + 2icd,

hence cd = 0.

Let a 6= 0. The case c = 0 yields that a ∈ −R2 and a = −d2 6∈ R2, the case
d = 0 that a = c2 ∈ R2, but not in −R2. So R = R2 ∪ (−R2). �

Another property of real closed fields is that ring endomorphisms ϕ : R → R don’t
change the ordering.
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Theorem A.15
Let R be a real closed field.

a) For every (ring) endomorphism ϕ : R → R, a ≤ b =⇒ ϕ(a) ≤ ϕ(b) for all
a, b ∈ R

b) If K � R is a subfield and R : K is algebraic, then the identity map is the only
K-automorphism of R.

Proof
Ad a) follows directly from R2 = {a ∈ R : a ≥ 0}.

Ad b) Let ϕ ∈ AutK(R) and a ∈ R. As [R : K] is algebraic, {ϕn(a) : n ∈ N} is a
finite set. Suppose ϕ(a) 6= a, wlog a < ϕ(a), then a) would inductively yield
a < ϕ(a) < ϕ2(a) < · · · , which is a contradiction. �

Theorem A.16 (Sturm’s Theorem)
Let R be a real closed field and f ∈ R[x]. Let a, b ∈ R be such that a < b and neither
a nor b are roots of f . Then the number of roots of F in the interval [a, b] is equal to
vf (a)− vf (b).

We can choose the same constant M for a polynomial as in Chapter 2 for the univariate
case for of polynomials f ∈ Q[x].

A.2.2 The Real Closure

Definition A.17
An algebraic extension R of an pre-ordered field (F, σ) is called a real closure of F if
R is real closed and its unique ordering extends the pre-ordering of F , i.e. σ ⊆ R2∩F .

A very useful theorem which is hard to proof is the existence of a unique real closure
for ordered fields.
Theorem A.18
Every ordered field (K, τ) admits a unique real closure Rτ .

Definition A.19
Let R be a real closed field. If ε is a variable, one denotes by R〈ε〉 the field of Puisseux
series in ε with coefficients in R. Its elements are the series of the form∑

i≥i0, i∈Z

aiε
i
q

with i0 ∈ Z, ai ∈ R, q ∈ N \ {0}. .
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The field R〈ε〉 is real closed and its positive elements are Puisseux series
∑+∞

i=k aiε
i
q

with ak > 0, i.e. a series is positive iff the lowest degree leading term is positive in
R.

Example A.20
1. The field of real algebraic numbers Ralg = Q ∩R is the real closure of Q.

2. Consider the field R(t) with the ordering τ = P0,+ (i.e. t > 0 and b ≥ t for
all b ∈ R, hence a polynomial f(t) = g(t)

h(t)
is non-negative if h(0) 6= 0 and

g(0) · h(0) ≥ 0). So the ordering of R〈t〉 extends the ordering of R(t) and in
fact, the field of Puisseux series R < t > is the real closure of R(t)

To finish this chapter I state one of the most important theorem on real closed fields,
the so called Tarski-Seidenberg principle. It tells us that if for any closed field R a
statement is true, it remains true in every real closed extension R′ of R. (see [BPR03]
Theorem 2.80)

Theorem A.21 (Tarski-Seidenberg principle)
Suppose that R′ is a real closed field containing the real closed field R. If Φ is a
sentence in the language of ordered fields over R (i.e. a statement over R using the
>,<, =, sign tags). Then Φ is true in R iff it is true in R′.

If we use this theorem, we can see e.g. that for the ordered field Q and its real closure
Ralg, which are contained in R, every statement we have done over Ralg is true over
R.

This is the reason why every definition or theorem in my Diplomarbeit is written over
R and not over Ralg. Especially, this was very useful for the definition of being positive
semi-definite or indefinite (see Lemma 3.1).
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B τ-real ideals and the real radical

In this section, I define τ -radicals for pre-orderings σ of real fields K.

Definition B.1 (τ -radicals and the real radical)
Let K be a formally real field and τ a pre-ordering of K. For any K-algebra A, we
define the τ -radical of an ideal I � A by

τ
√

I = {f ∈ A : f 2r +
m∑

i=1

aig
2
i ∈ I with r, m ∈ N, gi ∈ A and ai ∈ τ ∀i}.

An ideal I with the property I = τ
√

I is called τ -real.
If τ =

∑
K2 =: re, then re

√
I is called the real radical of I.

From this definition it is not clear that τ
√

I is an ideal. The only thing which is not
obvious is that τ

√
I additive. Therefore let f and g be in τ

√
I. We have to show that

f + g ∈ τ
√

I.

Proof
As f, g ∈ τ

√
I there exist m, n ∈ N and polynomials

a1, . . . , al, b1, . . . , br ∈ A,

l1, . . . , lr, k1, . . . , kr ∈ τ

such that

f 2m +
l∑

i=1

lia
2
i ∈ I

g2n +
r∑

i=1

kib
2
i ∈ I

Let wlog m ≥ n. Set λ =
l∑

i=1

lia
2
i and µ = g2(m−n)(

r∑
i=1

kib
2
i ) then:

f 2m + λ ∈ I and g2m + µ ∈ I.

97



B τ -real ideals and the real radical

Now let us consider the sum (f +g)4m +(f−g)4m. By the aid of the binomial theorem
we get:

(f + g)4m + (f − g)2m = (
4m∑
i=1

(
4m

i

)
f ig4m−i) + (

4m∑
i=1

(
4m

i

)
f i(−g)4m−i)

= (
2m∑
i=1

(
4m

2i

)
f 2ig2(2m−i))

Now set u as follows

u =
m∑

i=1

f 2i · g2(m−i)µ +
2m∑
i=1

λ · f 2(i−m) · g2(2m−i)

Hence u is the positive sum of squares and by the definition of u we conclude that

(f + g)4m + (f − g)4m + u ∈ I

and hence f + g ∈ τ
√

I. So τ
√

I = 〈f ∈ A : f 2r +
∑m

i=1 aig
2
i ∈ I with r, m ∈ N, gi ∈

A and ai ∈ τ ∀i〉 �

To see that this definition does not differ from the definition given in Chapter 1 for
K = Q we prove the following lemma:

Lemma B.2
Let K = Q, re =

∑
K2 = K≥0 is an ordering of K.

Proof∑
Q2 ⊆ Q≥0 is clear.

Let p
q
∈ Q>0. Then

p

q
=

pq

q2
=

pq∑
i=1

(
1

q
)2 ∈

∑
Q2.

�

Hence Q has a unique real closure and this closure is Ralg := Q ∩ R, so we get the
following corollary.

Corollary B.3
For every algebraic extension K of Q which is in R there exists only one possible
ordering, i.e.

∑
K2 = K≥0.
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B.1 Some properties of the τ
√-functor

The τ
√-functor has the following properties (cf. [BN98] Chapter 2).

Theorem B.4
Let (K, τ) be a pre-ordered field, I, J ideals in some K-algebra A and S a multiplicative
closed subset of A satisfying 1 ∈ S and 0 6∈ S. Then we have:

(a) τ
√

I ∩ J = τ
√

I ∩ τ
√

J

(b) τ
√

IS = ( τ
√

I)S

Here τ
√

IS denotes the τ -radical of the extension ideal IS of I in the quotient ring AS

which naturally is a k-algebra.

As localization is a fundamental concept to compute real radicals, we state similarly
to Chapter 1 the following properties:

Lemma B.5
Let (K, τ) be a pre-ordered field and I a τ -real ideal of some K-algebra A. Then all
minimal primes of I are τ -real as well.

Proof
Let P ∈ Min(I) and f ∈ re

√
P arbitrary. We want to show that f ∈ P .

From Lemma B.4, we conclude that

re
√

IP = (
re
√

I)P = IP = P ·K[x1, . . . , xn]P � K[x1, . . . , xn]P .

Now f ∈ re
√

P yields that f 2r + s ∈ P for suitable r ∈ N and s ∈
∑

τA2, i.e. we have
f 2r + s ∈ P = IP ∩ A. Hence there exists a t 6∈ P s.t.

t(f 2r + s) ∈ I =⇒ (tf)2r + t2rs ∈ I =⇒ tf ∈ re
√

I = I ⊂ P
t6∈P
=⇒ f ∈ P �

Corollary B.6
Let (K, τ) be a pre-ordered field and I an ideal of some K-algebra A. Then τ

√
I =

⋂
P ,

where P ranges over all τ -real primes containing I.

Proof
The τ -real ideal τ

√
I is radical and thus the intersection of its minimal primes. These

are τ -real by Lemma B.5. �

Proposition B.7
Let (K, τ) be a pre-ordered fields and P a prime ideal of some K-algebra A. Then the
following statements are equivalent:
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(a) P is τ -real

(b) There is some α ∈ X(K) satisfying α ⊇ τ which can be extended to an ordering
α of the function field k(P ) := Q(A�P ).

(c) There is some α ∈ X(K) satisfying α ⊇ τ such that P is α-real.

Moreover if A is an affine K-algebra and P a maximal ideal of A then the statements
(a)− (c) are equivalent to:

(d) There is some α ∈ X(K) satisfying α ⊇ τ such that k(P ) can be embedded into
some real closed field containing the real closure of (K, τ).

Proof
(a)⇒ (b) : Let τ denote the quadratic semi-ring defined by

τ := {
m∑

i=1

sia
2
i ∈ k(P ) : m ∈ N0 and s1, . . . , sm ∈ τ, a1, . . . , am ∈ k(P )}.

Claim: P is τ -real iff τ is a pre-ordering of k(P ).

Proof
⇒: Suppose τ is no pre-ordering in k(P ), i.e. −1 ∈ τ . Hence

− 1 =
m∑

i=1

si(
fi

gi

)2 where ai =
fi

gi

∈ k(P ), i.e. gi 6∈ P.

⇒− (
m∏

i=1

gi)
2 =

m∑
i=1

(si

∏
j 6=i

g2
j ) · f 2

i

⇒(
m∏

i=1

gi)
2 +

m∑
i=1

(si

∏
j 6=i

g2
j ) · f 2

i = 0 ∈ P

⇒
m∏

i=1

gi ∈
τ
√

P

But none of the gi is in P , hence there product isn’t in P as P is prime. Thus
τ
√

P 6= P .

⇐ Suppose that P is not τ -real. Then there exists an f 6∈ P s.t.

f 2r +
m∑

i=1

sia
2
i ∈ P

for suitable m ∈ N0, s1, . . . , sm ∈ τ and a1, . . . , am ∈ A.
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But then

−1 =
m∑

i=1

si︸︷︷︸
∈τ

(
ai

f r
)2︸ ︷︷ ︸

∈k(P )

∈ τ .

Hence τ is no pre-ordering. �

Now by choosing an ordering α ∈ X(k(P )) extending τ we obtain via the pro-
jection α = α ∩ k an element of X(k) as required in (b).

(b)⇒ (c): Let f ∈ τ
√

P , i.e. there exist suitable m, r ∈ N, s1, . . . , sm ∈ τ, a1, . . . , am ∈
A such that f 2r +

∑m
i=1 sia

2
i ∈ P .

Now taking residues modulo P yields the equation f
2r

+
∑m

i=1 siai
2 = 0 in the

ordered field (k(P ), α) from which we conclude that f = 0 in k(P ). Hence f ∈ P

(c)⇒ (a) This assertion follows immediately by the following inclusion chain

P ⊂ τ
√

P ⊂ α
√

P = P.

Hence τ
√

P = P .

Finally let me remark that in the case of an affine k-algebra A for any maximal ideal
P of A, the function field k(P ) = A/P is a finite (algebraic) extension of k. �

To finish this subsection we cite some important facts:

Proposition B.8
Let (K, τ) be a pre-ordered field and I an ideal of some affine K-algebra A. Then
τ
√

I =
⋂

M , where M ranges over all τ -real maximal ideals of A containing I.

Remark B.9
For the special case of (K, τ) = (Q,≥) and A = Q(y1, y2, . . . , ym)[x1, . . . , xn] this
proposition is the same as Corollary 1.10 from Chapter 1.

The well-known sign change criterion from D.Dubois and G. Elfroymson (see [KS89]
Chapter 2 § 12 Theorem 4) is:

Theorem B.10
Let (K, τ) be an ordered field with its unique real closure R and f ∈ K[x1, . . . , xn] be
an irreducible polynomial. Then the following are equivalent:

(a) The ordering τ can be extended to an ordering α over the function field k(f) =
Q(K[x1, . . . , xn]/〈f〉).
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(b) f is indefinite over R, i.e. the exists a, b ∈ Rn such that f(a) · f(b) < 0.

This leads us directly to the following remark about the situation over Q.

Remark B.11
Let f ∈ Q[x1, . . . , xn] be an irreducible polynomial. Then f is real (i.e. 〈f〉 is real) iff
f is indefinite over Ralg and thus by Theorem A.21 indefinite over R.

Proof
f is real iff the ordering re = Q≥ can be extended in Q(Q[x1, . . . , xn]/〈f〉) by Propo-
sition B.7. By the sign change criterion this can be extended iff f is indefinite over
Ralg. �

As a another remark for polynomials over Q(y1, y2, . . . , ym) we get:

Remark B.12
Let f ∈ Q(y1, y2, . . . , ym)[x1, . . . , xn] be an irreducible polynomial. Then f is not real
iff for every ordering α of Q(y1, y2, . . . , ym) and every corresponding real closure Rα

f is not indefinite (i.e. positive semi-definite) over Rα.

Proof
Let F := Q(y1, y2, . . . , ym).
Suppose the contrary. Therefore let me first of all remark that since f is irreducible
the ideal 〈f〉 is a prime ideal. Let now α ∈ X(F ) be an ordering such that f is
indefinite over Rα. This ordering α of F can be extended to an ordering α in k(f) =
F [x1, . . . , xn]/〈f〉.by Proposition B.7 b) this is equivalent to the statements that 〈f〉
is real. Thus f is real. �

B.1.1 The Real Nullstellensatz

We now state the Real Nullstellensatz which was proved by Krivine in the 60s. We
first define the set of real points. For more detailed information see [KS89] or ([BN98]
Definition 2.7 and Theorem 2.8)

Definition B.13
Let (K, τ) be a pre-ordered field and I � K[x1, . . . , xn]. For a ordering α ⊇ τ let Rα

denote the unique real closure of (K, α). Then we define the set of all τ -real point Vτ

as follows:
Vτ (I) = ∪α⊇τVRα(I).

Especially the set of all real points is denoted by Vre(I).

A generalization of Theorem 1.7 which was introduced in Chapter 1 is the general
Real Nullstellensatz:

102



B.1 Some properties of the τ
√-functor

Theorem B.14 (The general real Nullstellensatz)
Let (K, τ) be a pre-ordered field and I � K[x1, . . . , xn] be an ideal. The we have

IK(Vτ (I)) =
τ
√

I

.
Proof
⊇: Let f ∈ τ

√
I. We have to show that f vanishes at Vτ (I). From the definition of

Vτ (I) we get that
Vτ (I) = ∪α⊇τVRα(I).

As f ∈ τ
√

I we know that there exists an m ∈ N and polynomials g1, . . . gr ∈
K[x1, . . . , xn], k1, . . . lr ∈ τ such that f 2m +

r∑
i=1

kig
2
i ∈ I. For an arbitrary real

closed field Rα let x be an arbitrary zero of I. Thus

(f 2m +
r∑

i=1

kig
2
i )(x) = 0 =⇒ f 2m(x) +

r∑
i=1

kig
2
i (x) = 0

=⇒ f 2m(x)︸ ︷︷ ︸
∈α i.e. ≥0

+
r∑

i=1

kig
2
i (x)︸ ︷︷ ︸

∈α i.e. ≥0

= 0

=⇒ f 2m(x) = 0
Rα is a field

=⇒ f(x) = 0

Hence f vanishes at x.

⊆: Let f ∈ K[x1, . . . , xn]\ τ
√

I. We have to show that there exists an x ∈ Vτ (I) such
that f(x) 6= 0, i.e. there exists a real closed field R which contains the point x.
As f 6∈ τ

√
I there exists (by Proposition B.8) a τ -real maximal ideal such that I ⊆

M but f 6∈ M . Let k(M) be the function field K[x1, . . . , xn]/M . This field can
can embedded into some real closure R of (K, α) such that α ⊆ τ by Proposition
B.7 (d). Now, let ϕ : K[x1, . . . , xn] 7→ k[x1, . . . , xn]/M = k(M) denote the
canonical endomorphism. Then the point x := (x1, . . . , xn) ∈ k(M)n ⊆ Rn has
the demanded properties, i.e. f(x) 6= 0. �

The following lemma is useful for the computation in real closed fields. Note that it is
a kind of specialization of the Weak Nullstellensatz over algebraically closed fields.

Lemma B.15
Let R be any real closed field and M � ·R[x1, . . . , xn] be a maximal ideal. Then we
have the following 2 cases.

i. M is not real, so VR(M) = ∅.

ii. M is real and VR(M) consists of only one point.
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Proof
As M is a maximal ideal R′ := R[x1, . . . , xn]/M is a field extension. As R is real
closed, we know that R = R(i) and [R : R] = 2. So we have the following 2 cases.

[R′ : R] =1 Then R′ = R and every zero of M is real thus M is real.
Let a = (a1, a2, . . . , an) ∈ Rn so a ∈ VR(M).
Now IR(a) = 〈x1 − a1, x2, . . . , xn − an〉 is a maximal ideal contains M
as 〈x1 − a1, x2 − a2, . . . , xn − an〉 = IR(a) ⊂ IR(VR(M)) = M . Thus
M = 〈x1 − a1, x2 − a2, . . . , xn − an〉. And hence VR(M) = {a} is exactly
one point.

[R′ : R] =2 Then R′ = R and R is not real thus M is not real by Proposition B.7.
Hence by the real Nullstellensatz (Theorem B.14) VR(M) = ∅. �
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