Top
Back: rm_unitcol
Forward: inverse
FastBack: matrix_lib
FastForward: Commutative algebra
Up: Linear algebra
Top: Singular Manual
Contents: Table of Contents
Index: Index
About: About this document

D.3.2 linalg_lib

Library:
linalg.lib
Purpose:
Algorithmic Linear Algebra
Authors:
Ivor Saynisch (ivs@math.tu-cottbus.de)
Mathias Schulze (mschulze@mathematik.uni-kl.de)

Procedures:

D.3.2.1 inverse  matrix, the inverse of A
D.3.2.2 inverse_B  list(matrix Inv,poly p),Inv*A=p*En ( using busadj(A) )
D.3.2.3 inverse_L  list(matrix Inv,poly p),Inv*A=p*En ( using lift )
D.3.2.4 sym_gauss  symmetric gaussian algorithm
D.3.2.5 orthogonalize  Gram-Schmidt orthogonalization
D.3.2.6 diag_test  test whether A can be diagnolized
D.3.2.7 busadj  coefficients of Adj(E*t-A) and coefficients of det(E*t-A)
D.3.2.8 charpoly  characteristic polynomial of A ( using busadj(A) )
D.3.2.9 adjoint  adjoint of A ( using busadj(A) )
D.3.2.10 det_B  determinant of A ( using busadj(A) )
D.3.2.11 gaussred  gaussian reduction: P*A=U*S, S a row reduced form of A
D.3.2.12 gaussred_pivot  gaussian reduction: P*A=U*S, uses row pivoting
D.3.2.13 gauss_nf  gaussian normal form of A
D.3.2.14 mat_rk  rank of constant matrix A
D.3.2.15 U_D_O  P*A=U*D*O, P,D,U,O=permutaion,diag,lower-,upper-triang
D.3.2.16 pos_def  test symmetric matrix for positive definiteness
D.3.2.17 jordan  eigenvalues, Jordan block sizes, transformation matrix
D.3.2.18 jordanmatrix  Jordan matrix with eigenvalues, Jordan block sizes
D.3.2.19 jordanform  Jordan normal form of constant square matrix M


Top Back: rm_unitcol Forward: inverse FastBack: matrix_lib FastForward: Commutative algebra Up: Linear algebra Top: Singular Manual Contents: Table of Contents Index: Index About: About this document
            User manual for Singular version 2-0-0, February 2001, generated by texi2html.