Top
Back: MinMult
Forward: elim_lib
FastBack: algebra_lib
FastForward: elim_lib
Up: cimonom_lib
Top: Singular Manual
Contents: Table of Contents
Index: Index
About: About this document

D.4.3.3 CompInt

Procedure from library cimonom.lib (see cimonom_lib).

Usage:
CompInt(d); d intvec.

Return:
1 if the toric ideal I(d) is a complete intersection or 0 otherwise.

Assume:
d is a vector of positive integers.

Note:
If printlevel > 0, additional info is displayed in case I(d) is a complete intersection:
if printlevel >= 1, it displays a minimal set of generators of the toric ideal formed by quasihomogeneous binomials. Moreover, if printlevel >= 2 and gcd(d) = 1, it also shows the Frobenius number of the semigroup generated by the elements in d.

Example:
 
LIB "cimonom.lib";
"printlevel = 0;";
==> printlevel = 0;
printlevel = 0;
"intvec d = 14,15,10,21;";
==> intvec d = 14,15,10,21;
intvec d = 14,15,10,21;
"CompInt(d);";
==> CompInt(d);
CompInt(d);
==> 1
" ";
==>  
"printlevel = 2;";
==> printlevel = 2;
printlevel = 3;
"d = 36,54,125,150,225;";
==> d = 36,54,125,150,225;
d = 36,54,125,150,225;
"CompInt(d);";
==> CompInt(d);
CompInt(d);
==> // Toric ideal: 
==> id[1]=-x(1)^3+x(2)^2
==> id[2]=-x(4)^3+x(5)^2
==> id[3]=-x(3)^3+x(4)*x(5)
==> id[4]=-x(1)^11*x(2)+x(4)^3
==> // Frobenius number of the numerical semigroup: 
==> 793
==> 1
" ";
==>  
"d = 45,70,75,98,147;";
==> d = 45,70,75,98,147;
d = 45,70,75,98,147;
"CompInt(d);";
==> CompInt(d);
CompInt(d);
==> 0

Top Back: MinMult Forward: elim_lib FastBack: algebra_lib FastForward: elim_lib Up: cimonom_lib Top: Singular Manual Contents: Table of Contents Index: Index About: About this document
            User manual for Singular version 3-0-4, Nov 2007, generated by texi2html.