Top
Back: SDLoc
Forward: initialMalgrange
FastBack: dmod_lib
FastForward: freegb_lib
Up: dmodapp_lib
Top: Singular Manual
Contents: Table of Contents
Index: Index
About: About this document
7.7.4.0. DLoc0
Procedure from library dmodapp.lib (see dmodapp_lib).

Usage:
DLoc0(I, F); I an ideal, F a poly

Return:
ring

Purpose:
compute the presentation of the localization of D/I w.r.t. f^s,
where D is a Weyl Algebra, based on the output of procedure SDLoc

Assume:
the basering is similar to the output ring of SDLoc procedure

Note:
activate this ring with the setring command. In this ring,
the ideal LD0 (in Groebner basis) is the presentation of the localization
the list BS contains roots and multiplicities of Bernstein polynomial of (D/I)_f.

Display:
If printlevel=1, progress debug messages will be printed,
if printlevel>=2, all the debug messages will be printed.

Example:
 
LIB "dmodapp.lib";
ring r = 0,(x,y,Dx,Dy),dp;
def R = Weyl();    setring R; // Weyl algebra in variables x,y,Dx,Dy
poly F = x2-y3;
ideal I = (y^3 - x^2)*Dx - 2*x, (y^3 - x^2)*Dy + 3*y^2; // I = Dx*F, Dy*F;
// moreover I is not holonomic, since its dimension is not 2 = 4/2
gkdim(I); // 3
==> 3
def W = SDLoc(I,F);  setring W; // creates ideal LD in W = R[s]
def U = DLoc0(LD, x2-y3);  setring U; // compute in R 
LD0; // Groebner basis of the presentation of localization
==> LD0[1]=3*x*Dx+2*y*Dy+12
==> LD0[2]=3*y^2*Dx+2*x*Dy
==> LD0[3]=y^3*Dy-x^2*Dy+6*y^2
BS; // description of b-function for localization
==> [1]:
==>    _[1]=0
==>    _[2]=-1/6
==>    _[3]=1/6
==> [2]:
==>    1,1,1


Top Back: SDLoc Forward: initialMalgrange FastBack: dmod_lib FastForward: freegb_lib Up: dmodapp_lib Top: Singular Manual Contents: Table of Contents Index: Index About: About this document
            User manual for Singular version 3-1-0, Mar 2009, generated by texi2html.