Index: G
Jump to:
!
"
#
$
%
&
(
)
*
+
-
.
/
:
;
<
=
>
?
[
\
]
^
_
`
{
|
}
~
A
B
C
D
E
F
G
H
I
J
K
L
M
N
O
P
Q
R
S
T
U
V
W
X
Z
Index Entry
Section
G
G-algebra
7.4.1 G-algebras
G-algebra
Definition (G-algebra)
G-algebra, setup
Setting up a G-algebra
G_a -Invariants
A.5.1 G_a -Invariants
galois field
4.12 number
Gamma
D.4.22.19 Gamma
Gauss-Manin connection
C.5 Gauss-Manin connection
Gauss-Manin connection
D.5.11 mondromy_lib
Gauss-Manin connection
D.5.15.1 spectrumnd
Gauss-Manin system
D.5.7 gmssing_lib
Gauss-Manin system
D.5.7.1 gmsring
Gauss-Manin system
D.5.7.2 gmsnf
Gauss-Manin system
D.5.7.3 gmscoeffs
Gauss-Manin system
D.5.7.4 bernstein
Gauss-Manin system
D.5.7.5 monodromy
Gauss-Manin system
D.5.7.6 spectrum
Gauss-Manin system
D.5.7.7 sppairs
Gauss-Manin system
D.5.7.8 vfilt
Gauss-Manin system
D.5.7.9 vwfilt
Gauss-Manin system
D.5.7.10 tmatrix
Gauss-Manin system
D.5.7.11 endvfilt
Gauss-Manin system
D.5.8 gmspoly_lib
Gauss-Manin system
D.5.8.2 goodBasis
gauss_col
D.3.1.15 gauss_col
gauss_nf
D.3.2.13 gauss_nf
gauss_row
D.3.1.16 gauss_row
gaussred
D.3.2.11 gaussred
gaussred_pivot
D.3.2.12 gaussred_pivot
gcd
5.1.41 gcd
gcddivisor
D.11.4.7 gcddivisor
gcdMon
D.4.11.3 gcdMon
gcdN
D.11.3.4 gcdN
gen
5.1.42 gen
General command syntax
3.5.1 General command syntax
General concepts
3. General concepts
general error-locator polynomial
General error-locator polynomial
General purpose
D.2 General purpose
General syntax of a ring declaration
3.3.2 General syntax of a ring declaration
general weighted lexicographical ordering
B.2.4 Local orderings
general weighted reverse lexicographical ordering
B.2.4 Local orderings
general.lib
D.2.3 general_lib
general_lib
D.2.3 general_lib
Generalized Hilbert Syzygy Theorem
Generalized Hilbert Syzygy Theorem
Generalized Newton identities
C.8.3 Generalized Newton identities
generalOrder
D.11.6.4 generalOrder
generateG
D.11.3.33 generateG
generators
D.5.1.8 charexp2generators
genericid
D.2.6.1 genericid
genericity
D.10.2.10 genericity
genericmat
D.3.1.6 genericmat
genMDSMat
D.9.2.11 genMDSMat
genoutput
D.4.22.27 genoutput
genus
D.4.15.5 genus
German Umlaute
6.1 Limitations
getdump
5.1.43 getdump
getenv
5.1.137 system
Getting started
2.3 Getting started
GKdim
7.7.7.0. GKdim
gkdim.lib
7.7.7 gkdim_lib
gkdim.lib
7.7.7 gkdim_lib
gkdim_lib
7.7.7 gkdim_lib
gkdim_lib
7.7.7 gkdim_lib
GKZsystem
7.7.8.0. GKZsystem
Global orderings
B.2.3 Global orderings
GMP
1. Preface
gmscoeffs
D.5.7.3 gmscoeffs
gmsnf
D.5.7.2 gmsnf
gmspoly.lib
D.5.8 gmspoly_lib
gmspoly_lib
D.5.8 gmspoly_lib
gmsring
D.5.7.1 gmsring
gmssing.lib
D.5.7 gmssing_lib
gmssing_lib
D.5.7 gmssing_lib
good basis
D.5.7 gmssing_lib
good basis
D.5.7.10 tmatrix
good basis
D.5.8 gmspoly_lib
good basis
D.5.8.2 goodBasis
goodBasis
D.5.8.2 goodBasis
Graded commutative algebras
7.5 Graded commutative algebras (SCA)
graded module, graded piece
D.4.26.8 dimGradedPart
graded modules, handling of
A.3.5 Handling graded modules
graphics.lib
D.8.1 graphics_lib
graphics_lib
D.8.1 graphics_lib
graphviz
1. Preface
graver4ti2
D.4.27.3 graver4ti2
Greuel, Gert-Martin
Acknowledgements
groebner
5.1.44 groebner
groebner
A.2.1 groebner and std
Groebner bases
D.9.2 decodegb_lib
Groebner Bases
A.2 Computing Groebner and Standard Bases
Groebner bases in free associative algebras
7.6.2 Groebner bases for two-sided ideals in free associative algebras
Groebner bases in G-algebras
7.4.2 Groebner bases in G-algebras
Groebner bases, slim
A.2.3 slim Groebner bases
Groebner basis conversion
A.2.2 Groebner basis conversion
Groebner fan
D.12.1 polymake_lib
Groebner walk
D.4.6.4 awalk2
Groebner walk
D.4.6.6 gwalk
groebnerFan
D.12.1.5 groebnerFan
ground field
4.12 number
group_reynolds
D.6.1.8 group_reynolds
grwalk.lib
D.4.6 grwalk_lib
grwalk_lib
D.4.6 grwalk_lib
GTZmod
D.4.12.6 GTZmod
GTZopt
D.4.12.13 GTZopt
Guidelines for writing a library
3.9 Guidelines for writing a library
gwalk
D.4.6.6 gwalk
Gweights
7.7.10.0. Gweights
Jump to:
!
"
#
$
%
&
(
)
*
+
-
.
/
:
;
<
=
>
?
[
\
]
^
_
`
{
|
}
~
A
B
C
D
E
F
G
H
I
J
K
L
M
N
O
P
Q
R
S
T
U
V
W
X
Z
User manual for
Singular
version 3-1-1, Feb 2010, generated by
texi2html
.