Top
Back: abstractR
Forward: sagbiRreduction
FastBack: reszeta_lib
FastForward: sheafcoh_lib
Up: Commutative algebra
Top: Singular Manual
Contents: Table of Contents
Index: Index
About: About this document

D.4.25 sagbi_lib

Library:
sagbi.lib
Purpose:
Compute subalgebra bases analogous to Groebner bases for ideals
Authors:
Gerhard Pfister, pfister@mathematik.uni-kl.de,
Anen Lakhal, alakhal@mathematik.uni-kl.de

Procedures:

D.4.25.1 sagbiRreduction  perform one step subalgebra reducton (for short S-reduction) of p w.r.t I
D.4.25.2 sagbiSPoly  compute the S-polynomials of the Subalgebra defined by the genartors of I
D.4.25.3 sagbiNF  perform iterated S-reductions in order to compute Subalgebras normal forms
D.4.25.4 sagbi  construct SAGBI basis for the Subalgebra defined by I
D.4.25.5 sagbiPart  construct partial SAGBI basis for the Subalgebra defined by I


Top Back: abstractR Forward: sagbiRreduction FastBack: reszeta_lib FastForward: sheafcoh_lib Up: Commutative algebra Top: Singular Manual Contents: Table of Contents Index: Index About: About this document
            User manual for Singular version 3-1-1, Feb 2010, generated by texi2html.