|  |  D.4.5.1 curveDeltaInv Procedure from librarycurveInv.lib(see  curveInv_lib).
 
Example:Usage:
curveDeltaInv(I); I ideal
Assume:
I is a radical ideal, dim(R/I) = 1
Return:
the delta invariant of R/I
Note:
- output -1 means: delta invariant is infinite
- the optional parameter can be used if the normalization has already
been computed. If a list L contains the output of the procedure
normal (with options prim, wd and usering if the ring has a mixed ordering),
apply curveDeltaInv(I,L)
 
 See also:
 curveConductorMult;
 curveDeligneNumber.|  | LIB "curveInv.lib";
ring R = 0,(x,y,z),ds;
////////////////////////////
// Finite delta invariant //
////////////////////////////
ideal I = x2y-y2z,x2-y2+z2;
curveDeltaInv(radical(I));
==> 9
//////////////////////////////
// Infinite delta invariant //
//////////////////////////////
ideal J = xyz;
curveDeltaInv(radical(J));
==> -1
 | 
 
 |