| D.4.16.1 id |  | return a nxn identity Matrix | 
| D.4.16.2 zero |  | return a nxm zero Matrix | 
| D.4.16.3 freeModule |  | creating a graded free module | 
| D.4.16.4 makeMatrix |  | creating a Matrix with graded target and source if the matrix is homogeneous. If # is set to 1, makeMatrix ignores the grading of source & target. | 
| D.4.16.5 makeIdeal |  | creates an Ideal from an given ideal, is used to compute a resolution of the ideal | 
| D.4.16.6 Target |  | return target of the Matrix | 
| D.4.16.7 Source |  | return source of the Matrix | 
| D.4.16.8 printMatrix |  | print a Matrix | 
| D.4.16.9 printFreeModule |  | print a FreeModule | 
| D.4.16.10 printResolution |  | print a Resolution | 
| D.4.16.11 printModule |  | print a Module | 
| D.4.16.12 printHom |  | print a Homomorphism | 
| D.4.16.13 mRes |  | return a minimized graded Resolution | 
| D.4.16.14 sRes |  | return a graded Resolution computet with Schreyer's method | 
| D.4.16.15 Res |  | return a graded Resolution | 
| D.4.16.16 Betti |  | return the Betti-Matrix of the Resolution | 
| D.4.16.17 printBetti |  | prints the Betti-matrix of the Resolution | 
| D.4.16.18 SetDeg |  | sets an own graduatuation for the monomials | 
| D.4.16.19 Deg |  | same as deg, but can be used with an own graduation | 
| D.4.16.20 Degree |  | return list with degrees of the module | 
| D.4.16.21 Degrees |  | return list with degrees of the module | 
| D.4.16.22 subquotient |  | return a Module, the subquotient of the two Matrices | 
| D.4.16.23 coker |  | return a Module, the cokernel of the Matrix | 
| D.4.16.24 image |  | return a Module, the image of the Matrix | 
| D.4.16.25 Ker |  | return a Module, the kernel of the Matrix | 
| D.4.16.26 compareModules |  | return 0 or 1, compares the two Modules up to isomorphism | 
| D.4.16.27 addModules |  | return a Module, sum of the two Modules | 
| D.4.16.28 homomorphism |  | creates a R-Modul-Homomorphism | 
| D.4.16.29 target |  | return a Module, target of the Homomorphism | 
| D.4.16.30 source |  | return a Module, source of the Homomorphism | 
| D.4.16.31 compareMatrix |  | return 0 or 1, compares two Matrices | 
| D.4.16.32 freeModule2Module |  | converts a FreeModule into a Module | 
| D.4.16.33 makeVector |  | creates Vector in the given Module | 
| D.4.16.34 netVector |  | prints Vector | 
| D.4.16.35 netMatrix |  | prints Matrix | 
| D.4.16.36 presentation |  | converts M as a Subquotient to the Coker of a matrix C | 
| D.4.16.37 tensorMatrix |  | computes tensorproduct of two Matrices | 
| D.4.16.38 tensorModule |  | computes tensorproduct of two Modules | 
| D.4.16.39 tensorModFreemod |  | computes tensorproduct of Module and FreeModule | 
| D.4.16.40 tensorFreemodMod |  | computes tensorproduct of FreeModule and Module | 
| D.4.16.41 tensorFreeModule |  | computes tensorproduct ot two FreeModules | 
| D.4.16.42 tensorProduct |  | computes tensorproduct | 
| D.4.16.43 pruneModule |  | simplifies the presentation of a Module | 
| D.4.16.44 hom |  | computes Hom(M,N) | 
| D.4.16.45 kerHom |  | computes the kernel of a Homomorphism | 
| D.4.16.46 interpret |  | interprets the Vector in some Module or abstract space | 
| D.4.16.47 interpretInv |  | interprets a Vector or Homomorphism into the given Module | 
| D.4.16.48 reduceIntChain |  | reduces a chain of interpretations to minimal size or # steps | 
| D.4.16.49 interpretElem |  | interpret a Vector with # steps or until can't interpret further | 
| D.4.16.50 interpretList |  | interpret a list of Vectors as far as possible | 
| D.4.16.51 compareVectors |  | compares two Vectors with regard to the relations of their Module | 
| D.4.16.52 simplePrune |  | simplify module |