|  |  D.4.18.7 quotientMon Procedure from librarymonomialideal.lib(see  monomialideal_lib).
 
Example:Usage:
quotientMon (I,J); I,J ideals.
Return:
an ideal, the quotient I:J.
(returns -1 if I or J is not monomial)
 
Assume:
I,J are monomial ideals of the basering.
Note:
the minimal monomial generating set is returned.
 |  | LIB "monomialideal.lib";
ring R = 0,(w,x,y,z,t),lp;
ideal I = w^3*x*y,w*x*y*z*t,x^2*y^2*z^2,x^2*z^4*t^3,y^3*z;
ideal J = w*x, x^2, y*z*t, y^5*t;
quotientMon (I,J);
==> _[1]=y3z
==> _[2]=y2z2t
==> _[3]=xy2z2
==> _[4]=wy2zt
==> _[5]=wxyzt
==> _[6]=w3xy
==> _[7]=w2y2z2
==> _[8]=w3y2z
==> _[9]=x2z4t3
==> _[10]=wxz4t3
 | 
 
 |