|  |  D.4.25.11 finiteDiagInvariants Procedure from librarynormaliz.lib(see  normaliz_lib).
 
Example:Usage:
finiteDiagInvariants(intmat U);
finiteDiagInvariants(intmat U, intvec grading);
 
Return:
This function computes the ring of invariants of a finite abelian group  acting diagonally on the surrounding polynomial ring ![$K[X_1,...,X_n]$](sing_1036.png) . The
group is the direct product of cyclic groups generated by finitely many
elements  . The element  acts on the indeterminate  by  where  is a primitive root of
unity of order equal to  . The ring of invariants is generated by all
monomials satisfying the system  mod ord  ,  .
The input to the function is the  matrix  with rows  ord  ,  . The output is a monomial ideal
listing the algebra generators of the subalgebra of invariants  for all  . 
The function returns the ideal given by the input matrix C if one of
the options
 supp,triang,volume, orhserieshas been activated.
However, in this case some numerical invariants are computed, and
some other data may be contained in files that you can read into
Singular (see  showNuminvs,  exportNuminvs). 
Note:
 See also:
 diagInvariants;
 intersectionValRingIdeals;
 intersectionValRings;
 torusInvariants.|  | LIB "normaliz.lib";
ring R = 0,(x,y,z,w),dp;
intmat C[2][5] = 1,1,1,1,5, 1,0,2,0,7;
finiteDiagInvariants(C);
==> _[1]=w5
==> _[2]=z7w3
==> _[3]=z14w
==> _[4]=z35
==> _[5]=yw4
==> _[6]=yz7w2
==> _[7]=yz14
==> _[8]=y2w3
==> _[9]=y2z7w
==> _[10]=y3w2
==> _[11]=y3z7
==> _[12]=y4w
==> _[13]=y5
==> _[14]=xz3w
==> _[15]=xz24
==> _[16]=xyz3
==> _[17]=x2z13
==> _[18]=x3z2
==> _[19]=x5zw4
==> _[20]=x5yzw3
==> _[21]=x5y2zw2
==> _[22]=x5y3zw
==> _[23]=x5y4z
==> _[24]=x7w3
==> _[25]=x7yw2
==> _[26]=x7y2w
==> _[27]=x7y3
==> _[28]=x12zw2
==> _[29]=x12yzw
==> _[30]=x12y2z
==> _[31]=x14w
==> _[32]=x14y
==> _[33]=x19z
==> _[34]=x35
 | 
 
 |