|  |  D.5.18.5 sheafCohBGGregul Procedure from librarysheafcoh.lib(see  sheafcoh_lib).
 
Example:Usage:
sheafCohBGGregul(M,l,h); M module, l,h int, reg int
Assume:
Mis graded, and it comes assigned with an admissible degree
vector as an attribute,h>=l, and the basering hasn+1variables.
Return:
intmat, cohomology of twists of the coherent sheaf F on P^n
associated to coker(M). The range of twists is determined by l,h.
Note:
This procedure is based on the Bernstein-Gel'fand-Gel'fand
correspondence and on Tate resolution ( see [Eisenbud, Floystad,
Schreyer: Sheaf cohomology and free resolutions over exterior
algebras, Trans AMS 355 (2003)] ).
 sheafCohBGG(M,l,h)does not compute all values in the above
table. To determine all values ofh^i(F(d)),d=l..h,
usesheafCohBGG(M,l-n,h+n).
 See also:
 dimH;
 displayCohom;
 sheafCoh.|  | LIB "sheafcoh.lib";
// cohomology of structure sheaf on P^4:
//-------------------------------------------
ring r=0,x(1..5),dp;
module M=0;
def A=sheafCohBGGregul(M,-9,4,CM_regularity(M));
A;
==> 70,35,15,5,1,0,0,0,0,0,-1,-1,-1,-1,
==> -1,0,0,0,0,0,0,0,0,0,0,-1,-1,-1,
==> -1,-1,0,0,0,0,0,0,0,0,0,0,-1,-1,
==> -1,-1,-1,0,0,0,0,0,0,0,0,0,0,-1,
==> -1,-1,-1,-1,0,0,0,0,0,1,5,15,35,70 
// cohomology of cotangential bundle on P^3:
//-------------------------------------------
ring R=0,(x,y,z,u),dp;
resolution T1=mres(maxideal(1),0);
module M=T1[3];
intvec v=2,2,2,2,2,2;
attrib(M,"isHomog",v);
def B=sheafCohBGGregul(M,-8,4,CM_regularity(M));
B;
==> 189,120,70,36,15,4,0,0,0,0,-1,-1,-1,
==> -1,0,0,0,0,0,0,0,0,0,0,-1,-1,
==> -1,-1,0,0,0,0,0,0,1,0,0,0,-1,
==> -1,-1,-1,0,0,0,0,0,0,0,6,20,45 
 | 
 
 |