|  |  D.6.20.5 is_ci Procedure from librarysing.lib(see  sing_lib).
 
Example:Usage:
is_ci(i); i ideal
Return:
intvec = sequence of dimensions of ideals (j[1],...,j[k]), for
k=1,...,size(j), where j is minimal base of i. i is a complete
intersection if last number equals nvars-size(i)
Note:
dim(0-ideal) = -1. You may first apply simplify(i,10); in order to
delete zeroes and multiples from set of generators
printlevel >=0: display comments (default)
 
 |  | LIB "sing.lib";
int p      = printlevel;
printlevel = 1;                // display comments
ring r     = 32003,(x,y,z),ds;
ideal i    = x4+y5+z6,xyz,yx2+xz2+zy7;
is_ci(i);
==> // complete intersection of dim 0
==> // dim-sequence:
==> 2,1,0
i          = xy,yz;
is_ci(i);
==> // no complete intersection
==> // dim-sequence:
==> 2,2
printlevel = p;
 | 
 
 |