|  |  D.12.2.18 MillerRabin Procedure from librarycrypto.lib(see  crypto_lib).
 
Example:Usage:
MillerRabin(n,k);
Return:
1 if n is prime, 0 else
Note:
probabilistic test of Miller-Rabin with k loops to test if n is prime.
Using the theorem: If n is prime, n-1=2^s*r, r odd, then
powerN(a,r,n)=1 or powerN(a,r*2^i,n)=-1 for some i
 |  | LIB "crypto.lib";
bigint x=2;
x=x^787-1;
MillerRabin(x,3);
==> 0
 | 
 
 |