|  |  D.12.5.1 weierstrDiv Procedure from libraryweierstr.lib(see  weierstr_lib).
 
Example:Usage:
weierstrDiv(g,f,d); g,f=poly, d=integer
Assume:
f must be general of finite order, say b, in the last ring variable,
say T; if not use the procedure lastvarGeneral first
Purpose:
perform the Weierstrass division of g by f up to order d
Return:
- a list, say l, of two polynomials and an integer, such thatg = l[1]*f + l[2], deg_T(l[2]) < b, up to (including) total degree d
 - l[3] is the number of iterations used
 - if f is not T-general, return (0,g)
 
Note:
the procedure works for any monomial ordering
Theory:
the proof of Grauert-Remmert (Analytische Stellenalgebren) is used
for the algorithm
 |  | LIB "weierstr.lib";
ring R = 0,(x,y),ds;
poly f = y - xy2 + x2;
poly g = y;
list l = weierstrDiv(g,f,10); l;"";
==> [1]:
==>    1+xy-x3+x2y2-2x4y+2x6+x3y3-3x5y2+5x7y+x4y4-5x9-4x6y3+9x8y2+x5y5
==> [2]:
==>    -x2+x5-2x8
==> [3]:
==>    5
==> 
l[1]*f + l[2];               //g = l[1]*f+l[2] up to degree 10
==> y-5x11+14x10y2+5x7y5-9x9y4-x6y7
 | 
 
 |