|  |  5.1.57 homog 
 
See
 ideal;
 module;
 poly;
 vector.Syntax:homog (ideal_expression)
 homog (module_expression)Type:int
Purpose:tests for homogeneity: returns 1 for homogeneous input, 0 otherwise.
Note:If the current ring has a weighted monomial ordering,
homogtests for weighted homogeneity w.r.t. the given weights.Syntax:homog (ideal_expression,intvec_expression)Type:int
Purpose:tests for homogeneity wrt. the given weight vector:
returns 1 for homogeneous input, 0 otherwise.
Syntax:homog (polynomial_expression,ring_variable)
 homog (vector_expression,ring_variable)
 homog (ideal_expression,ring_variable)
 homog (module_expression,ring_variable)Type:same as first argument
Purpose:homogenizes polynomials, vectors, ideals, or modules by multiplying
each monomial with a suitable power of the given ring variable.
Note:If the current ring has a weighted monomial ordering,
homogcomputes the weighted homogenization w.r.t. the given weights.The homogenizing variable must have weight 1.
Example:|  |   ring r=32003,(x,y,z),ds;
  poly s1=x3y2+x5y+3y9;
  poly s2=x2y2z2+3z8;
  poly s3=5x4y2+4xy5+2x2y2z3+y7+11x10;
  ideal i=s1,s2,s3;
  homog(s2,z);
==> x2y2z4+3z8
  homog(i,z);
==> _[1]=3y9+x5yz3+x3y2z4
==> _[2]=x2y2z4+3z8
==> _[3]=11x10+y7z3+5x4y2z4+4xy5z4+2x2y2z6
  homog(i);
==> 0
  homog(homog(i,z));
==> 1
 | 
 |