|  |  D.15.2.14 regularBasis Procedure from libraryarnold.lib(see  arnold_lib).
 
Example:Usage:
regularBasis(F,a); F Poly, a int
Return:
a list that contains a regular basis of F.value with respect to the piecewiseweight defined by the Newton polygon of F.value. If a=1, the only the elements of the
regular basis that lie above or on the Newton polygon defined by F.value is given.
 |  | LIB "arnold.lib";
ring R = 0,(x,y),ds;
poly f = x^9+x^2*y^4+y^2*x^4+y^8;
Poly F = makePoly(f);
regularBasis(F,0); 
==> [1]:
==>    x4y4
==> [2]:
==>    x4y3
==> [3]:
==>    x3y4
==> [4]:
==>    x4y2
==> [5]:
==>    x3y3
==> [6]:
==>    x2y4
==> [7]:
==>    x8
==> [8]:
==>    y7
==> [9]:
==>    x3y2
==> [10]:
==>    x2y3
==> [11]:
==>    x7
==> [12]:
==>    y6
==> [13]:
==>    x2y2
==> [14]:
==>    x6
==> [15]:
==>    xy3
==> [16]:
==>    y5
==> [17]:
==>    x3y
==> [18]:
==>    x5
==> [19]:
==>    x2y
==> [20]:
==>    xy2
==> [21]:
==>    y4
==> [22]:
==>    x4
==> [23]:
==>    y3
==> [24]:
==>    xy
==> [25]:
==>    x3
==> [26]:
==>    y2
==> [27]:
==>    x2
==> [28]:
==>    y
==> [29]:
==>    x
regularBasis(F,1);
==> [1]:
==>    x4y4
==> [2]:
==>    x4y3
==> [3]:
==>    x3y4
==> [4]:
==>    x4y2
==> [5]:
==>    x3y3
==> [6]:
==>    x2y4
 | 
 
 |