|  |  D.15.9.2 hodgeIdeals Procedure from libraryhodge.lib(see  hodge_lib).
 
Example:Usage:
hodgeIdeals(f, p [, eng]); f a reduced poly, p a non-negative integer, eng an optional integer.
Return:
ring
Purpose:
compute the Hodge ideals of 
 up to level  , for a reduced hypersurface  . 
Note:
activate the output ring with the setringcommand.In the output ring, the list of ideals
 hodgecontains the Hodge ideals of . The value of
 engcontrols the algorithm used for Groebner basis computations.See the
 engineprocedure from  dmodapp_lib for the available algorithms.
Display:
If printlevel=1, progress debug messages will be printed.
 |  | LIB "hodge.lib";
ring R = 0,(x,y),dp;
poly f = y^2-x^3;
def Ra = hodgeIdeals(f, 2);
setring Ra; hodge;
==> [1]:
==>    [1]:
==>       [1]:
==>          _[1]=1
==>       [2]:
==>          _[1]=y
==>          _[2]=x
==>       [3]:
==>          _[1]=y^2
==>          _[2]=x*y
==>          _[3]=x^3
==>    [2]:
==>       1/6
==>    [3]:
==>       1
==> [2]:
==>    [1]:
==>       [1]:
==>          _[1]=1
==>       [2]:
==>          _[1]=y
==>          _[2]=x^2
==>       [3]:
==>          _[1]=y^3
==>          _[2]=x*y^2
==>          _[3]=x^2*y
==>          _[4]=x^3+(2*a+1)*y^2
==>    [2]:
==>       5/6
==>    [3]:
==>       1
==> [3]:
==>    [1]:
==>       [1]:
==>          _[1]=y
==>          _[2]=x
==>       [2]:
==>          _[1]=y^2
==>          _[2]=x*y
==>          _[3]=x^3
==>       [3]:
==>          _[1]=y^3
==>          _[2]=x^2*y^2
==>          _[3]=x^3*y
==>          _[4]=x^4+(2*a+1)*x*y^2
==>    [2]:
==>       1
==>    [3]:
==>       1
 | 
 
 |